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Abstract—We present the application of statistical classifiers
to the problem of automatic identification of radio frequency
interference (RFI) in radio astronomy. RFI can corrupt measure-
ments made by radio telescopes and it is therefore very important
that such interference can be identified. We compile a dataset
of RFI signals gathered at the SKA site near Carnavon, South
Africa, and use this data to train and evaluate some statistical
classifiers. We find the best performing system to use the k-
nearest-neighbour (knn) classifier and achieve an accuracy of
93%. Since our dataset was limited by the capturing equipment
in terms of record length, we feel that there is scope to improve
on this figure in the future.

I. INTRODUCTION

In radio astronomy radio frequency interference (RFI) can
corrupt measurements and thereby render experimental results
incorrect. In some cases the RFI saturates the receiver, ren-
dering the measurements worthless. In other cases it may
be difficult or even impossible to identify and remove the
interference from data gathered by a radio telescope. The
RFI signals may originate from external sources, or from the
electronics in the radio telescope itself. This paper focuses on
the automatic identification of signals generated by external
sources.

II. EXISTING MITIGATION METHODS

A common method of preventing RFI is to simply keep the
area surrounding a radio telescope free of possible sources.
This is not always possible, for example when the telescope
is situated in a built-up area. Furthermore, new RFI sources
may unwittingly be introduced, for example by visitors bearing
equipment whose RFI emissions are not well characterised.
To ensure the integrity of data gathered from the telescopes,
continuous active monitoring of RFI emissions is important.

A. RFI Mitigation Using Additional Antennas

Various approaches to the removal of RFI by means of
secondary antennas have been considered. The secondary
antennas are low-gain antennas, and are sensitive only to
the interference signal. Correlated components between the
secondary signal and the primary signal can be removed
from the latter. However, because the primary antenna can
usually rotate, it is susceptible to differing amounts of RFI[1].
The secondary antenna also illuminates a much larger part
of the sky and in order to intercept the interference signal

it may include the surrounding horizons. This can introduce
environmental thermal noise into the signal.

In [2] a method of RFI mitigation is investigated using a
digital adaptive filter. An algorithm continually adjusts the
filter in such a way that the output interference power is
minimized. In [3] a phased array is used to detect and record
interfering signals. A phased array is used for better control
of the receiving antenna pattern. The antenna used in these
experiments is a six element hexagonal array

B. Thresholding Based Methods

Another common method of mitigating RFI is to flag data as
containing RFI when the power of the received signal exceeds
a certain threshold. The threshold can also be set globally or
varied according to signal properties. In the cumulative sum
(CUSUM)[4] method, small frames of samples are summed
and an average calculated. If this average exceeds the threshold
all the samples fully within the considered frames are flagged.

Combinatory thresholding extends the CUSUM method.
Here the frame lengths and the threshold for each frame are
varied. The average for small frames must exceed a large
threshold, while the average for a larger frame has a lower
threshold.

C. Statistical Methods

In [5] a method of removing RFI using surface fitting and
smoothing is proposed. A function is fitted to the correlated
visibilities. The assumption is made that the combination of
the astronomical signal to the image is smooth, while the RFI
introduces more rapid changes. This method is not suitable for
the detection of pulsars or other narrowband sources.

D. Post-Flagging Techniques

Once data has been flagged in the the frequency domain
further processing can be performed to improve the accuracy
of the flagging. Analysis of the RFI signal properties can also
be performed.

In [6] the statistics of RFI events are investigated. Data
from the Parkes Multi beam Pulsar Survey is applied to a
thresholding algorithm to flag RFI events. The frequency band,
angle of arrival as well as the time of day is used to analyse
the statistical distribution of RFI.
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E. Morphological Algorithms

An algorithm based on the mathematical principle known
as dilation was proposed in [7]. The antenna data is first
processed by one of the other mitigation techniques, such as
thresholding. This will produce an array of flags for the data,
which is then processed by the morphological algorithm. The
morphological algorithm flags additional samples around al-
ready flagged data, based on various criteria. For example, the
morphological algorithm assumes that the samples surround-
ing flagged samples are likely to also contain RFI, but at lower
power. These samples are not detected by previous algorithms,
but can still interfere with the astronomical observations. The
algorithm therefore flags such additional samples based on the
number of samples originally flagged. The algorithm processes
one dimension at a time, but can be applied to any number of
dimensions successively. The order in which the dimensions
are processed is important.

As the above brief literature review shows, the application
of statistical classifiers to the identification of RFI has not
received much attention. We attempt to address this with a
first set of experiments.

III. DATA COLLECTION

RFI data from various sources is required for analysis and
classification, in the form of time-domain signals, containing
components from the offending source. Many different cap-
tures are required for statistical classification in order to build
a statistical model of the signal.

Ideally the data should be captured in an RFI silent envi-
ronment, to ensure that no other signals are present and to
minimize the environment noise present. This type of RFI
isolation can be provided by an anechoic chamber. However,
we were uncertain whether the signal captured in an anechoic
chamber would properly resemble the real world signal. Fur-
thermore some sources were too big or even immobile and
could therefore not be characterized in an anechoic chamber.

Therefore data was captured from various sources using
the Real Time Analyser and an log periodic dipole antenna
(LPDA) during a visit to the SKA site. These were provided
by the SKA office in Cape Town. Data was captured in the
time domain. For some of the captures, the on-site RFI trailer
was used [8]. The trailer uses a Rhode-Schwarz HL033 LPDA
antenna attached to a mast.

a) Real Time Analyser: The Real Time Analyser (RTA)
is capable of high-speed data capturing in both the time
and frequency domain. The RTA samples at 1.8GSa/s, and
therefore a wide band. However at the time of writing the RTA
could only capture 8 microseconds of the signal continuously.
The RTA can capture from any one of four different frequency
band as shown in Table I. We attempted data capture from all
four bands, but ultimately focused mainly on the lowest band
since little signal activity was seen in the higher bands. For
our analysis the bands are treated separately because they were
not sampled simultaneously.

TABLE I
TABLE OF RTA FREQUENCY BANDS

Band Frequency
1 50 - 850 MHz
2 800 - 1050 MHz
3 1050 - 1670 MHz
4 1950 - 2550 MHz

The RTA has configurable gain and attenuator sections in
the signal chain. These are adjusted on a source by source
basis, and for every band used.

In frequency domain capture mode, the RTA accumulates
the spectrum of the signal over a configurable duration, usually
between 1 and 10 seconds. In this mode the frequency band
is divided into 32678 channels by an internal polyphase filter
bank. This means that the frequency capture mode is not very
suitable for capturing transients. It can however be used to
detect low-powered stationary RFI signals [9].

b) LPDA Antenna: The LPDA antenna was chosen be-
cause it operates over a wide frequency band and is directional.
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Fig. 1. LPDA gain over frequency

Figure 1 shows the gain of the LPDA antenna over a
frequency range. The graph shows a relatively consistent gain
over the lower gigahertz range, from 200MHz to 4 GHz.

c) Sources: Many different RFI sources were considered.
They were selected based on the availability of the source.
The same sources were captured multiple times, in multiple
different frequency bands. Some of the sources proved very
difficult to capture due to their transient nature and the short
(8µS) capture window of the RTA.

Table II shows the raw number of samples available, before
any processing was applied. Some of the sources have captures
in all 4 bands, but most only have in the first band. During
data capturing an approaching lightning storm was noticed.
Captures made during that time were labelled as such and
were not used.



TABLE II
NUMBER OF FRAMES OBTAINED FOR EACH RFI SOURCE.

Source Name Band 1 Band 2 Band 3 Band 4
Bakkie lights 30 0 0 0
Bakkie radio 7 0 0 0
Bakkie start 31 7 0 0
Big crane 15 0 44 31
Big radio 26 0 0 0
Cellphone 7 59 0 0
Cherry picker 10 0 0 0
Compressor 9 0 0 0
Diesel filter 114 16 14 13
Kat7 meysdam 41 0 0 0
Lightning discard 28 0 0 0
Meerkat compressor 209 0 0 0
Meysdam gap 252 0 0 0
Possible lightning 9 0 0 0
Radio 22 0 0 0
Refrigerator unit 13 5 0 0
VW ignition 24 0 0 0
VW indicators 28 0 0 0
Welder 17 0 0 0
Welder spark 12 0 0 0
Total 904 87 58 4

IV. DATA PROCESSING

The data provided by the RTA consist of sets of 32768
consecutive time samples, which in the following we will
refer to as captures. After ensuring zero mean, each capture
was divided into frames of 1024 samples, overlapping by
512 samples. Each frame was then further divided into four
segments of 128 samples. The magnitude of the Fast Fourier
Transform of each segment was calculated after applying a
Hamming window. The four magnitude spectra were averaged
to represent the frequency content of the frame. This process
produced a spectrogram of the data.

a) Outlier Removal: The spectrograms were used to
visually inspect the captured data. Any obviously corrupt
(outlier) captures were removed. These included captures
containing any other interference signals such as radio signals.
Such interference was identified by comparing all the captures
for a specific source, and isolating obvious deviations. There
are automated methods of detecting outliers as well.
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Fig. 2. Example spectrogram of several different sources.

Figure 2 shows several examples of the spectrograms from
different sources. Differences in frequency content between
the various classes can be seen.

b) Labelling: The data was assigned labels based on
notes taken while capturing. Two different methods of la-
belling were used: per capture labelling, and per frame la-
belling. Per capture labelling assigned a label to the entire
capture, even though some sections might be silent. The frame
of the spectrogram containing the greatest power was used as
the feature vector.

Per frame labelling assigned a label to each frame, using
the same frames mentioned above. If the power in a frame
exceeded a threshold, it was labelled as the RFI signal. Oth-
erwise it was labelled as silence. The threshold was manually
adjusted on a file by file basis, but was always kept between
5% and 15% of the total power of the capture. This method
made much more data available, as each frame is introduced
to the classifier. The silence classes were averaged together,
under the assumption that they are similar.

Per-frame labelling was motivated by an inspection of the
data which revealed that, due to the impulsive and non-
stationary nature of many of the interference sources, most
captures included a substantial amount of silence, during
which no interference was present.

V. EXPERIMENTAL RESULTS

10-Fold cross validation was used in all experiments to
make good use of the limited dataset. The data was divided
into 10 equal subsets, called folds. Six of the folds were used
for training, two for tuning and the remaining two for testing.
An experimental result was obtained for this fold. The different
subsets of data used for each set were then varied for each of
the permutations.

For each of these classifiers, parameter optimization was
performed on the tuning folds. These parameters are calculated
for each data fold, and the optimal value was then selected.

Two different classifiers were investigated; a KNN classifier
and a GMM classifier. A KNN classifier predicts the class of
a new data point by selecting the most prevalent class among
the k closest neighbours in the training data set. The only
parameter to be tuned is the number of nearest neighbours
(k). This value is varied over a small range of values, and the
optimal value based on the tuning set is selected.

A GMM classifier creates a generative model for the data
by fitting one or more Gaussian distributions over the data of a
single class. This can be used to calculate the probability that
a new data point belongs to a certain class. When repeated for
all the classes, the class with the highest probability is selected.
The Gaussian distributions are fitted using the expectation
maximization algorithm.

The possible parameters for the GMM classifier are the
number of distributions, as well as the constraint on the
covariance matrix of each distribution. The covariance matrix
can be constrained to be a single value, a diagonal matrix or
a full matrix.



A. Classification using Per-capture Labels

Classification using the per-capture labelled data was per-
formed first. For the KNN classifier a value of K = 1 was
found to be optimal. The average classification accuracy was
found to be 70.80%, with a standard deviation of 30.72%.

For the GMM, a full covariance matrix using 3 Gaussians
was found to be optimal. The GMM achieves an average
classification accuracy of 65.56%, with a standard deviation
of 31.01%. Some classes are almost unused by the classifier.
These results are reflected in the first line of III.

B. Classification using Per-frame Labels

Next, classification was performed using the per-frame
labelled data. Again, the KNN and GMM parameters were
optimized by using a tuning data set within a 10-fold cross
validation framework. Figure 3 shows the classification accu-
racies for different values of k on the tuning set. Figure 4
shows corresponding results for different GMM parameters.
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Fig. 3. Comparison of KNN classifier accuracies for various values of k
when using frame-based labels.
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Fig. 4. Comparison of GMM classifier accuracies for different number of
Gaussians and covariance matrix, when using per-frame labelling.

For the KNN classifier, 1 nearest neighbour was again
found to be optimal, but in this case an accuracy of 93.20%
and standard deviation of 6.46% was achieved. The optimal

GMM classifier used 3 Gaussians per mixture and a diagonal
covariance matrix to achieve an average accuracy of 87.34%
and standard deviation of 10.76%. These results are reflected
in the second line of Table III.

The per-frame labels achieved a substantially better accu-
racy for the KNN and GMM classifiers. The KNN achieved a
better accuracy than the GMM overall.

C. Classification of Data from Higher Frequency Bands

Similar experiments were performed using the data from
the higher frequency bands. However, much less data was
available in these bands, because many sources proved difficult
to capture or did not emit any detectable signals at all in
these bands. Both the per-capture and per-frame labels were
used to train both the KNN and GMM classifiers. Again the
tuning set was used to optimize the parameters. The optimal
KNN classifier again used k = 1 while the GMM classifier
used 2 Gaussians and a diagonal covariance matrix. The KNN
classifier achieved an accuracy of 89.54%, with a standard
deviation of 6.58%. The GMM had an accuracy of 91.38%
and standard deviation of 4.84%.

VI. FURTHER FEATURE EXTRACTION EXPERIMENTS

Two variations of the feature extraction methods were also
investigated.

A. Classification using a Reduced Feature Vector

Rather than dividing each frame into segments of 128
samples, they were divided into segments containing just 32
samples. The average magnitude spectrogram was then cal-
culated using these shorter segments, and the DC component
removed. This reduces the feature vector dimension to 15 and
was expected to make classification much quicker, but also to
reduce the accuracy of classification. The experiments of the
previous section were repeated for this configuration. Other
data reduction methods such as Principle Component Analysis
are also available, but were not used.

B. Augmentation with Delta Frames

The spectral feature vector used originally can be extended
by appending the finite difference to the next frame (delta).
This results in a doubling of the feature vector dimensionality.

Neither reduced feature dimensionality nor the augmenta-
tion with delta frame led to improved performance. The results
for both are shown alongside the other results in Table III.

VII. DISCUSSION AND CONCLUSION

Overall the work showed that it is possible to classify RFI
using machine learning techniques. Both of the classifiers that
were investigated were able to classify the data with high
accuracies.

Overall the per-frame based labels performed better than
the per-capture labels. The per-frame labels divided the signal
into finer segments and used all of it to classify, rather than
choosing the segment with the most power. The increased
detail helped to achieve a better classification result.
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Fig. 5. Confusion matrix of the KNN classifier using frame based labels.

Table III summarizes all the results. Overall the KNN clas-
sifier using frame based labels scored the best. In future work
other classifiers might be considered, especially if more data
is available. This will however require more and specifically
longer captured data than is currently available.

Figure 5 shows a confusion matrix for the KNN classifier
using frame based labels. The visible diagonal indicates that
most classifications are performed correctly. Almost all classes
had a few frames misclassified as silence. This seems to
suggest that the silence frames identified by the thresholding
method still contain some features that can be identified. There
is room for a better labelling technique, which extracts more
labelled frames from the total dataset.

This also introduces the possibility of a classifier that at-
tempts to distinguish between RFI and silence signals. Another
classifier can then distinguish the RFI signals from each other.

TABLE III
CLASSIFICATION ACCURACIES FOR ALL CLASSIFIERS

Feature Type KNN Classifier GMM Classifier
Accuracy Std. Dev. Accuracy Std. Dev.

Capture based labels 70.80% 30.72 65.56% 31.01
Frame based labels 93.20% 6.46 87.34% 10.76
Reduced feature vector 81.70% 16.36 78.35% 16.69
Delta frames 86.05% 13.23 78.34% 18.28

For future work longer captures and more captures of a
source in different configurations is desirable. Longer captures
will enable a better model to be created of the transient prop-
erties of the RFI. The currently presented analysis assumes the
RFI characteristics of a given source remain constant in time.
Longer captures might enable more insight into this aspect of
the RFI emissions, and allow for time-varying models.

Data from the source in different configurations will allow
more extensive testing of the classifier. Capturing the source
from further away, while difficult, will provide an excellent
test for the classifier.
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