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Abstract

Neural networks have recently been shown to be a very effec-
tive approach to the unconstrained segmentation of speech into
phoneme-like units. The neural network is trained to indicate
when a short local sequence of feature vectors is associated
with a segment boundary, and when it is not. Although this
approach delivers state-of-the-art performance, it is prone to
over-segmentation at ambiguous segment boundaries. To ad-
dress this, we propose the incorporation of the neural network
segmenter into a dynamic programming (DP) framework. We
evaluate the DP-based approach on the TIMIT corpus, and show
that it leads to improved performance.

Index Terms: unconstrained automatic speech segmentation,
dynamic programming, multilayer perceptrons

1. Introduction

The task of accurately segmenting a speech signal into
phoneme-like units plays an important role in the speech pro-
cessing field. Although accurate manual segmentation can be
achieved by trained phoneticians, the task is tedious, expensive
and subjective. In an under-resourced setting, in which very
little transcribed phonetic material is available, automatic seg-
mentation algorithms can accelerate the task of developing a
pronunciation dictionary and obtaining suitable bootstrapping
acoustic training data, thereby substantially reducing the time it
would take to develop an automatic speech recognition (ASR)
system. The availability of reliable automatic segmentation al-
gorithms is also useful in technologies outside ASR, such as the
study of pronunciation variation, the development of coherent
large-scale dictionaries, text-to-speech (TTS) applications [1],
and many others [2, 3, 4].

A distinction can be made between segmentation ap-
proaches that require phone or orthographic transcripts, and
those that do not. These two approaches are often referred to
as constrained and unconstrained respectively [S]. There is also
a distinction between algorithms that segment speech into syl-
lables and into phoneme-like units.

Constrained approaches usually perform a forced alignment
between phoneme based hidden Markov models (HMMs) and
a phonetic transcription [1, 5, 6], or align phoneme templates
to a signal using dynamic time warping (DTW) [1, 5, 7]. Un-
constrained approaches typically rely on a scoring function that
is applied at the feature level and indicates possible segment
boundaries. Because these scores are calculated from a local
group of features, we will refer to them as ‘local scores’. Pop-
ular local scores are vector distance functions which respond
to the dynamics of the features and from which a peak-picking
algorithm finds viable local maxima at which to hypothesise
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segment boundaries [8, 9, 10, 11, 3]. Rule based approaches
that use language-specific knowledge to calculate a local score
independent of the phone string [4, 12], and HMM phone loop
segmentation also fall into the unconstrained class [5].

Artificial neural networks (ANNs) have been applied
to both constrained and unconstrained segmentation ap-
proaches. The constrained approaches are mostly based on
hybrid HMM/ANN algorithms in which multilayer percep-
trons (MLPs) act either as phone probability estimators [13, 14],
or are used to detect phoneme transitions in order to refine
the boundaries produced by an HMM alignment [15, 16]. For
unconstrained segmentation, ANNs have recently been shown
to be highly effective [5, 17]. We propose an improved un-
constrained ANN segmentation algorithm by introducing a dy-
namic programming (DP) framework which employs a prob-
abilistic segment length model in conjunction with the ANN
scores to hypothesise segment boundaries. The TIMIT corpus
will be used for the training and testing of the proposed algo-
rithm.

Section 2 gives a brief overview of the ANN-based segmen-
tation algorithm used as the baseline, Section 3 describes the
DP algorithm, Section 4 discusses the evaluation methods used,
Section 5 gives an overview of the experimental setup, Section 6
contains the results, and conclusions are given in Section 7.

2. Segmentation using neural networks

An MLP can be employed to compute a local score on the ba-
sis of a group of consecutive feature vectors. In recent work this
was achieved by training two output neurons, one outputs a high
value when the evidence in the input feature vectors supports the
presence of a boundary, and the other when the evidence sup-
ports the absence of a boundary [5]. The training data consists
of feature vector groups located around phoneme boundaries
and feature vector groups midway between two boundaries. The
local score is obtained by taking the difference between the two
outputs. Approaches that rely on the detection of local maxima
in such local scores, such as those proposed in [8, 9, 10, 11, 3],
may now be employed to find possible segment boundaries.

As proposed in [5], an MLP with 30 hyperbolic tangent
neurons in the hidden layer, and two hyperbolic tangent neu-
rons in the output layer was employed for segmentation in our
experiments. A window size of 10ms with a step of Sms was
used to calculate the feature vectors. Groups of 11 consecu-
tive feature vectors centred about the point of interest were used
with 12 MFCCs and log energy as features. The network was
trained by back-propagation, and functions by detecting regions
in time where the local score is larger than zero throughout the
region. A segment boundary is then hypothesised at the frame
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at which the local score is at a maximum within the region as
demonstrated by Equation 1,
[ER] = argmax {LS(it)}
te{Sg...ER}
where Bp is the boundary frame in the region, Sr and Er
are the start and end of the region respectively, LS is the local
score, and i, are the frames between Sg and Er [5].

€]

3. DP-based segmentation

‘We propose to embed the neural-network based detection mech-
anism described in the previous section in a dynamic program-
ming (DP) framework by including an explicit probabilistic
model for the length of a segment. In this way segments that
are either very short or very long are penalised by their associ-
ated low probability. The probability distribution of phoneme
lengths for TIMIT is illustrated in Figure 1. For illustrative pur-
poses, the distribution has been normalised with respect to its
maximum.
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Figure 1: Probability distribution of phoneme lengths in the
TIMIT training set [18], as used by Equation 2.

The DP-based segmentation algorithm will in general need
to compute probabilities for segments as long as the utterance it-
self. This is achieved by attaching a linear decaying tail stretch-
ing from the maximum segment length for which a probability
estimate is available to the length of the utterance at hand.

3.1. Local score probability distributions

To gain some insight into the behaviour of the local score near
segment boundaries, its probability distribution in boundary re-
gions can be estimated. A similar distribution can be deter-
mined for regions that are far from these boundaries. Figure 2
shows these distributions for the local score when calculated
with the MLP proposed in Section 2. The distributions were es-
timated from the TIMIT core test set, and are normalised with
respect to their maxima for clarity. The distributions shown
in Figures 1 and 2 are used to determine the probability that
a boundary occurs at a specific frame in a speech signal.

3.2. Dynamic programming

Consider an utterance consisting of N+1 frames. Let the time of
occurrence of each frame correspond to a state of an HMM as
shown in Figure 3, where M is the maximum allowed number
of frames per segment and Sy is the time of occurrence of the
first frame of the signal. The vertical dashed arrows between .Sq
and S1, and between Sy _1 and Sx—1 indicate an expansion of
the same HMM state.

When a state is visited by a path through the Markov model,
a segment boundary is considered to occur at the corresponding
speech frame. The transition and emission probabilities are cal-
culated according to Equations 2 and 3 respectively, where S L
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Figure 2: Estimated probability distribution of the MLP local
score values at, and away from, phoneme boundaries (Eq. 3).
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Figure 3: DP-based segmentation formulated as an HMM.

refers to the segment length, LS to the local score, and SB to
the occurrence of a segment boundary.

a;; = P(S;|SL(S;, Si)) )

bj = P(SB|LS(S;)) 3)
The segment length is given by Equation 4, where step is
the frame step in seconds.

SL(S;,8:) = (j — i)  step ©)

Hence the transition probability is dependent only on the
elapsed time between states, while the emission probability at
state Sj is dependent on the local score LS(.S7). The emission
probability can be calculated by the application of Bayes rule

as shown in Equation 5, where |S B refers to the absence of a
segment boundary.

P(SB|LS(S;)) =
P(LS(S;)|SB)P(SB)
P(LS(S;)|SB)P(SB) + P(LS(S;)|!SB)P(1SB)
(&)
The prior probability of the occurrence of a segment bound-

ary can be estimated from the TIMIT corpus, as shown in Equa-
tion 6.

number of phoneme boundaries in TIMIT
number of framesin TIMIT

P(SB) =
(0)
The probability that a boundary occurs at a particular frame

can now be calculated by using Equations 4 and 5 in conjunction
with estimates of the probability distributions.



3.3. Optimal path

The globally optimal path from Sy to Sy in Figure 3 can be
determined using the Viterbi algorithm. The states that are
visited by the optimal path identify the optimal segmentation.
States Sp and Sy are always included in the path, and therefore
the algorithm assumes that segment boundaries are always
present at the start and the end of the speech signal. This
means that any initial and final silence must be removed before
applying the algorithm.

3.4. Normalising for path length

During the Viterbi decoding, many probabilities are multiplied
together for any given path. Shorter paths (which contain fewer
multiplications and thus longer segments) may therefore be
preferred, even when these have low associated emission and
transition probabilities. We compensate for this by modify-
ing the emission and transition probabilities as shown in Equa-
tions 7 and 8.

ai; = P(S;|SL(S;, i) 515 @)
bj = P(SBILS(S;))*" %) @®)

This modification normalises segment probabilities with re-
spect to their lengths.

4. Assessing segmentation accuracy

In order to assess the quality of automatic-generated segmen-
tations, we will determine how closely they correspond to the
TIMIT phonetic segmentations.

4.1. Comparing segmentations by fixed margins

It appears to be standard practice in related research to con-
sider a hypothesised and a reference segmentation boundary to
be a match whenever they occur within 20ms of one another
[1,5,6,8,9, 10, 11, 14, 16]. All non-matching boundaries are
then regarded as either insertions or deletions. In order to make
our results comparable to those of others, this scoring frame-
work has been employed. An error measure termed the average
error (ERR) is calculated. This figure is the average percentage
insertions (INS) and deletions (DEL) taken with respect to the
number of reference boundaries in the utterance.

4.2. Comparing segmentations by DP

Two sequences of segment boundary times can also be com-
pared using DP. We proceed by first determining the best align-
ment between the two sequences of boundary times. The total
absolute time difference between the boundaries paired in this
alignment is taken as the cost of the path. By dividing the path
cost by the number of reference boundaries, the cost in seconds
per reference boundary can be obtained. This will be referred to
as “DP Cost” and used as a figure of merit in our experiments.

A disadvantage of the fixed margin method is that all in-
sertions and deletions are considered equal regardless of their
positions. For example, a succession of deletions is not ex-
plicitly penalised in the fixed margin method. Comparing seg-
mentations by DP penalises insertions and deletions relative to
their closest paired boundary, and a succession of deletions will
therefore result in a large cost because the closest paired bound-
ary will be far away. We will use the DP evaluation mechanism
in addition to the fixed margin method to obtain a better impres-
sion of how closely two boundary sequences are aligned.
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5. Experimental setup
5.1. Data

Our experimental evaluations are based on the TIMIT
database [19]. The development set specified in [18] was used
to optimise all parameters, and the core test set was reserved ex-
clusively for final testing. There is no speaker overlap between
any of the sets. Leading and trailing silences were removed
to ensure that each utterance begins and ends with a segment
boundary.

5.2. Probability weights

As it stands, the DP segmentation algorithm will give equal
weight to the transition and emission probabilities, due to the
segment length and local score respectively. However, it may
be beneficial to shift the balance more strongly towards one or
the other. By multiplying the log values of the emission and
transition probabilities by positive constants that sum to one,
this shift in balance can be achieved, and will allow deletions to
be traded for insertions and vice versa. In all our experiments,
this value was optimised on the development set.

6. Results

Table 1 compares the performance of the NN based segmenta-
tion algorithm proposed in [5], the same algorithm when em-
bedded in the DP framework we propose in Section 3, and a
combined approach that will be discussed in Section 6.1. Note
that the results presented by [5] were calculated by using dif-
ferent assessment measurements to those used in our paper, and
are therefore not directly comparable.

Method DP Cost (ms) %INS %DEL %ERR
NN 14.50 12.74 17.00 14.87
DP 13.57 12.46 17.96 15.21
Combined  13.20 13.06 15.72 14.39

Table 1: Comparison of core test set performance of NN based
segmentation in isolation, when embedded in a DP framework,
and when NN and DP approaches are combined.

In our experiments, we attempted to keep the deletion and
insertion errors of the DP segmentation close to those obtained
in [5] to facilitate comparison. Table 1 shows that an increase in
the average error is observed for the DP segmentation method.
On the other hand, a considerable decrease in the DP cost was
achieved. This indicates that the DP leads to segment bound-
aries that are on average more closely aligned to the TIMIT
boundaries, but with slightly fewer boundary pairs within 20ms
of one another.

During informal evaluation we observed typical errors
made by both the NN and DP algorithms. We illustrate some
of these errors by means of the segmentations produced by
both algorithms for the same sentence, dr6-fbchO-sal, in Fig-
ures 4 (NN) and 5 (DP). Each figure shows the first two seconds
of the utterance. The dashed vertical lines show the hypothe-
sised boundaries, and the solid vertical lines show the TIMIT
reference phone boundaries.

For the NN algorithm, insertions were found to be frequent
at boundary regions where local scores had very small ampli-
tudes. The boundary in the middle of the second ‘r’ in Figure 4
illustrates this type of insertion. The NN method also has a ten-
dency to miss segment boundaries when more than one large
peak occurs in the boundary region. The deletion of the bound-
ary at the start of the second ‘s’ illustrates this tendency.
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Figure 4: Segmentation results for the NN algorithm for sen-
tence dr6-fbchO-sal.

The DP implementation, on the other hand, frequently skips
a plausible boundary because it closely precedes a boundary
with relatively high probability, leading to a deletion. The dele-
tion near ‘d’ in Figure 5 is an example of such an error.
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Figure 5: Segmentation results for the DP algorithm for sen-
tence dr6-fbchO-sal.

6.1. Emission probability threshold

The local scores generated by the MLP appear to be very good
indicators of the presence of boundaries. The tendency of plau-
sible boundaries to be skipped by the DP implementation is
therefore detrimental to its performance when using the MLP-
based local score. We attempted to address this shortcoming by
proposing a hybrid approach between the two algorithms. This
hybrid approach takes all the boundaries proposed by the NN
segmentation approach that have an emission probability above
a specific threshold, and fixes these before DP is performed.
The DP then has the task of choosing between boundaries hy-
pothesised by peaks with lower emission probabilities as well as
between other higher probability peaks that were skipped by the
NN segmenter. Figures 6 and 7 show the effect of this threshold
on the DP cost and the average error respectively.
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Figure 6: DP cost (as described in Section 4.2) as a function
of the emission probability threshold for the combined method,

measured on the development set.

Figures 6 and 7 show that segmentation accuracy is im-
proved by including the new threshold. For the optimal thresh-
old, Table 1 gives the segmentation performance achieved by
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the combined method on the core test set. There is a substantial
improvement in terms of both DP cost and average error, indi-
cating that the hypothesised boundaries are better aligned with
the TIMIT boundaries and that more boundary pairs are within
20ms of one another.
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Figure 7: Average error (as described in Section 4.1) as a func-
tion of the emission probability threshold for the combined

method, measured on the development set.

The segmentation of sentence dr6-fbchO-sal achieved by
the combined method is shown in Figure 8. Both the insertion
at the second ‘r’ and the deletion near the ‘d” have been avoided.
While this is merely a specific example, similar improvements
were observed informally for many other utterances.
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Figure 8: Segmentation results for the combined method for
sentence dr6-fbchO-sal.

7. Summary and conclusion

We propose an algorithm based on the principle of dynamic
programming for the unconstrained automatic segmentation of
continuous speech into phoneme-like units. A measure of seg-
ment boundary probability is computed by an MLP from a num-
ber of consecutive feature vectors. This is combined with a
knowledge of the statistical distribution of the segment lengths
within a dynamic programming framework to obtain an opti-
mal placement of segment boundaries. We compare the per-
formance of our algorithm with the performance of a recently
proposed alternative, which applies MLPs, but not within a
DP framework. For experimental evaluation, we measure how
closely the hypothesised boundaries match the TIMIT phone
boundaries. It was found that an improved alignment between
the generated and TIMIT boundaries was achieved when em-
ploying the DP-based framework, and that a hybrid approach
which combines aspects of both algorithms leads to even better
results. We conclude that the incorporation of dynamic pro-
gramming into speech segmentation algorithms is successful.
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