
Appears in: Transactions of the SAIEE, vol. 96, no. 3, pp. 224-233, September 2005

DEVELOPMENT OF A SPOKEN DIALOGUE SYSTEM OPERATING IN
AFRIKAANS, SOUTH AFRICAN ENGLISH AND XHOSA

M. Tait*, A. Visagie* and T.R. Niesler*

* Department of Electrical and Electronic Engineering, University of Stellenbosch, South Africa.

Abstract: We present a spoken dialogue system operating in Afrikaans, South African English and Xhosa.
The architecture of the overall system as well as the speech recognition, natural language understanding,
dialogue control and speech synthesis subcomponents are described. Prototype systems operating in each
of the three languages have been developed and subjected to user trials. The performance achieved by these
systems is compared, giving some insight into the use of each language in spoken dialogue systems.

Keywords: Spoken dialogue system, speech recognition, speech synthesis

1. INTRODUCTION

Speech is the most natural form of human communication.
For this reason speech-based computer interfaces have the
potential of making the interaction with machines both eas-
ier and more intuitive.

A Spoken Dialogue System is a machine designed to main-
tain a verbal dialogue with a human user. The aim of the di-
alogue is to negotiate a certain task with a user using speech
(as opposed to keyboard and screen). This task is often to
provide the user with particular information, or to effect a
transaction on the user’s behalf.

The following figure illustrates the components of our dia-
logue system and how it operates.

Telephone
Network
Interface

RETRIEVE
INFORMATION

MEANING OF

RECOGNISED

UTTERANCE

SYSTEM

RESPONSESYSTEM’S

USER’S

UTTERANCE

SPEECH

SPEECH
TELEPHONE

ANALOG

LINE

Control
Dialogue

Database

Understanding

Natural
LanguageRecognition

Speech

Speech
Synthesis

Figure 1: Architecture of a spoken dialogue system.

The user contacts the system by telephone. The speech
recognition component transcribes the acoustic signal re-
ceived from the user into a sequence of words. These words
are interpreted by the natural language understanding com-
ponent to determine the meaning of the user’s utterance.
Based on this extracted meaning, the dialogue controller
decides on the most appropriate next action, which may in-
clude querying a database in order to retrieve information
requested by the user. Finally, the system responds to the
user by means of the speech synthesis component. This cy-
cle continues until the transaction has been completed.

A hotel reservation task has been chosen as an easily-under-
stood and concrete example with which to develop and test

our dialogue system technology. The system allows the user
to make a (fictitious) hotel reservation over the telephone.
The goal is for the system to interact with the user in much
the same way a human receptionist would. A typical extract
from the dialogue may proceed as follows:

1. The system asks the user to supply some information
that it needs in order to proceed with the dialogue.
This requires speech synthesis.
Example: “When will you be arriving at the Mount

Elegance Hotel?”

2. The systems listens for the users reply. This requires
speech recognition.
Example: “Umm, I’ll be there on the 6th of October.”

3. The system interprets the user’s reply. This requires
natural language understanding.
Example: “ArrivalDate = 06:10:2005”

4. The system decides on the the most appropriate next
action to take. This requires dialogue control.
Example: Request departure date.

5. The system synthesises its next utterance based on
the next action.
Example: “And when will you be leaving?”

This cycle of system prompting followed by user response
continues until either a hotel booking is completed success-
fully, or the user becomes dissatisfied and terminates the
dialogue prematurely.

The work presented in this paper was carried out as part of
the recently completed African Speech Technology (AST)
project [14]. The AST initiative was aimed at promoting
the technological development of the indigenous languages
of South Africa. One of its outcomes was the preparation of
speech corpora in five of the country’s eleven official lan-
guages. These corpora were used to develop the acoustic
models used by our spoken dialogue systems.



In the following we will describe the particular architec-
ture that we have adopted for the construction of spoken
dialogue systems. This is followed by an appraisal of the
system’s performance when applied to the hotel reservation
task in Afrikaans, in English and in Xhosa.

2. DIALOGUE SYSTEM ARCHITECTURE

The functionality discussed in the previous section is im-
plemented as a set of five software components, namely the
System Manager, Telephony Manager, Recognition Man-
ager, Dialogue Controller and Prompt Generation Manager.
These components interact via inter-process communica-
tion (IPC) and work together to form a framework within
which a spoken dialogue application can be developed.

2.1. The system manager

The system manager initialises and configures the other
software components. Our architecture allows several dia-
logue systems to share the same telephony, recognition and
synthesis managers. The system manager coordinates this
resource sharing and maintains global system logs.

2.2. The telephony manager

The telephony manager is the interface between the dia-
logue system and the public telephone network, as illus-
trated schematically in Figure 1. It notifies the system man-
ager of incoming calls, and may be instructed by the dia-
logue controller to accept such calls. Furthermore the tele-
phony manager relays user speech data from the telephone
network to the recognition manager, and system speech
from the prompt generation manager back to the telephone
network. Finally, once the dialogue is complete the tele-
phony manager can be instructed by the dialogue controller
to terminate a call.

2.3. The recognition manager

The recognition manager handles both the speech recog-
nition and natural language understanding processes illus-
trated in Figure 1. These processes are discussed in more
detail in sections 3 and 4. User speech data is passed to the
recognition manager by the telephony manager. The recog-
nition manager in turn passes the inferred meaning of the
utterance to the dialogue controller.

2.4. The dialogue controller

The dialogue controller decides what the most appropriate
next step in the dialogue should be, based on the meaning
obtained from the recognition manager. If a database must
be queried, this is done by the dialogue controller. Finally,
the dialogue controller formulates a user response in the
form of a text string, and passes this to the prompt gener-
ation manager. One may regard the dialogue controller as

the essence of the spoken dialogue system, and the remain-
ing managers as the controller’s communication channels to
and from the user. The operation of the dialogue controller
is discussed in more detail in section 5.

2.5. The prompt generation manager

The prompt generation manager is responsible for the syn-
thesis of a speech waveform from a text string passed to it
by the dialogue controller. This speech waveform is in turn
passed to the telephony manager for playback to the user.
Speech synthesis is discussed in more detail in section 6.

3. SPEECH RECOGNITION

The recognition manager uses the HTK decoder for
speech recognition [17]. This open-source hidden Markov
model-based (HMM) speech recognizer performs a time-
synchronous beam-search using the Token-Passing proce-
dure [16].

A set of HMM acoustic models was trained for each of
the three languages using the HTK tools and the AST
speech corpora. The speech was parameterised as Mel-
frequency cepstral coefficients (MFCCs) and their first
and second differentials. Diagonal-covariance speaker-
independent cross-word triphone models with three states
per model and eight Gaussian mixtures per state were
trained using the phonetically-labeled training sets by em-
bedded Baum-Welsh re-estimation and decision-tree state
clustering. The performance of these models, in terms of
phoneme recognition error, is given in Table 1.

Phoneme Number of Phoneme recognition
set phonemes accuracy (%)

Afrikaans 83 67.4

English 72 74.7

Xhosa 110 64.3

Table 1: Phoneme recognition accuracies.

A global set of 154 phonemes based on the International
Phonetic Alphabet (IPA) has been used to transcribe all
AST corpora. The table shows that a different subset of
these were present in each corpus, and that the number
of phonemes present in each of the three languages varies
considerably. This to a certain extent accounts for the dif-
fering phoneme recognition accuracies. In particular, the
best performance is achieved for English, which has the
smallest number of phonemes, while the recognition task
is more difficult for Xhosa with its much larger number of
phonemes. A more detailed analysis of the phonetic con-
tent of each of the three corpora as well as a description of
the development of the acoustic models is given in [12].
The English phoneme recognition accuracies reported in
Table 1 are similar to those reported by other authors for
American English for the Wall Street Journal and TIMIT
corpora [10]. A direct comparison is difficult, however, due



to the differing natures of the acoustic training and test data,
as well as the differing number of phonemes.

Pronunciation dictionaries were created for each of the
three languages to allow word-based speech recognition us-
ing the phonetic acoustic models. For English, this dictio-
nary was created entirely by human experts. For Afrikaans
and Xhosa, initial pronunciations were determined using
grapheme-to-phoneme rules, and these were subsequently
corrected and validated manually.

4. NATURAL LANGUAGE UNDERSTANDING

Our dialogue system makes use of a finite-state natural lan-
guage understanding network, as currently successfully em-
ployed by a number of experimental as well as commer-
cially deployed dialogue systems [1, 6, 9, 11]. In this ap-
proach the set of user responses that can be processed (i.e.
“understood”) by the system is precisely defined by a graph
whose links (edges) correspond to words or sets of words.
The set of sentences that the system will accept is given
by the set of all the unique paths through the network. As
an example, consider the finite-state network illustrated in
Figure 2.

This simple network represents a total of eight different sen-
tences which can be identified by following different paths
from the start to the end node. In practice the finite-state
networks are more complex and the number of utterances
they cover much larger.

Certain links in the network have associated variable as-
signments, for example “city=Durban” in Figure 2. The
value assigned to each variable after traversing the network
from start to end nodes will be passed to the dialogue con-
trol unit. Hence the variable assignments effect the pro-
cess of natural language understanding and the values of
the variables represent the meaning of the utterance. Both
the structure of the finite-state network as well as the vari-
able assignment are designed by a dialogue developer by
means of a specialised regular grammar syntax [13].

Each state of the dialogue that expects user speech input has
associated with it such a finite-state network. The network
describes the possible utterances expected from the user at
that particular point in the dialogue. The string of words
recognised by the speech recognition component is passed
to the natural language understanding module, which deter-
mines the particular path through the network represented
by the recognised utterance. In order to ensure that such a
path can always be found, our speech recogniser employs
the same finite-state network to constrain its recognition
search. Finally, the variable assignments made along this
path are identified to extract the meaning of the utterance.

At this point one might ask whether it is possible to specify
all possible user utterances by means of a finite-state net-
work. Although this can not be guaranteed and there are
generally an unlimited number of different ways in which
a user may respond to the system, people tend to reply in
predictable ways. In particular, they tend to reply using the
words they have heard the system use in its most recent

prompts [2, 7]. By carefully designing the system prompts
in conjunction with the finite-state understanding gram-
mars, it is possible for the dialogue developer to minimise
the probability of a user’s reply lying outside the specified
set of allowable utterances. Iterative system refinement is
achieved by repeatedly updating the understanding gram-
mars after performing a set of user trials, so as to include
unanticipated user responses. We have followed this ap-
proach in developing our hotel-reservation prototypes.

5. THE DIALOGUE CONTROLLER

Our dialogue controller is implemented as a state machine
where each state fulfills a specific role in the dialogue. In
particular, the following steps are executed sequentially in
each state.

(a) Information is conveyed to the user by means of syn-
thesised speech.

(b) The user’s response to the system’s speech in step (a)
is captured by means of speech recognition.

(c) The recognised user utterance from step (b) is inter-
preted by means of natural language understanding.

(d) On the basis of information obtained from the user’s
utterance in step (c) the system chooses the most ap-
propriate next dialogue state.

(e) Execution branches to the dialogue state determined
in step (d).

Steps (b) and (c) are omitted in states that serve only to con-
vey information to the user and do not require a response.
Step (d) is trivial if the current dialogue state has just one
possible successor.

Dialogue system development begins with the design of a
state diagram as a solution to a particular problem, and the
specification of steps (a)-(d) for each state.

5.1. System prompts

A system prompt is a speech utterance generated by the
dialogue system, as required in step (a) above. In our archi-
tecture, every dialogue state has associated with it one or
more of the following possible prompts.

• The Main prompt is generated when the state is first
entered. Its purpose is to convey the function of the
state to the user. The system utterances in the dia-
logue fragment used as illustration in section 1 are
Main prompts.

• The Help prompt is generated when the user asks for
help. It describes how the current state expects the
user to respond. The user may ask for help at any
point in the dialogue.



Blue Bay Hotel

Can I stay in the

hotel = blue bay

hotel = mount elegance

Mount Elegance Hotel

in

city = cape town

city = durban

Durban

Cape Town please

Figure 2: Example of finite state recognition network.

• The ReEntry prompt is generated when a state is en-
tered for the second time. This happens for example
when the user has specified an invalid information
item and the system must prompt the user for that
same information again. The ReEntry prompt is usu-
ally phrased differently from the Main prompt in or-
der to avoid monotony and to ensure that unnecessary
information is not repeated.

• The Timeout1 and Timeout2 prompts are generated
when the system has waited for a user utterance
for a predetermined period of time without detect-
ing any speech. The Timeout1 or Timeout2 prompt
is used depending on whether this has occurred for
the first or for the second time in this state. The two
prompts are phrased slightly differently in order to
avoid monotony.

• The Retry1 and Retry2 prompts are generated when
the system was unable to recognise the user’s utter-
ance (i.e. a speech recognition failure occurs). As
before, Retry1 and Retry2 are phrased slightly differ-
ently in order to avoid monotony.

• The Operator prompt is generated when the user asks
to be transferred to a human operator. Our system
permits this at any point in the dialogue.

• The Goodbye prompt is generated when the user asks
to quit the dialogue. Again, this may occur at any
time.

• The Back prompt is generated as confirmation when
the user asks to go back to the previous dialogue
state.

• The Repeat prompt is generated when the user asks
for the Main prompt to be repeated, possibly because
he has not understood it the first time. The Repeat
prompt is played, followed by a repetition of the
Main prompt.

Only the Main prompt is compulsory. For example, if a
state does not expect user input, the system proceeds to
the next appropriate state immediately after generating the
Main prompt.

Prompt design is a very important aspect of spoken dia-
logue development since it to a large degree determines the
naturalness and clarity of the dialogue. Furthermore, care-
fully crafted main prompts will reduce the ambiguity of the
user’s reply and allow it to be anticipated more easily.

For example, the system prompt:

“What type of room would you like?”

may be expected to elicit a wide variety of responses from
the user because the type of reply that is expected is not
clearly implied. If the prompt were rephrased as:

“Would you like a single, double or suite?”

the user’s reply would be much more constrained, most of-
ten explicitly containing the words “single”, “double” or
“suite”.

The more constrained the user’s replies are, the easier and
more successful the natural language understanding process
will generally be.

5.2. Dialogue design tools

We have produced a graphical tool with which to develop
the spoken dialogue state machine. The states, their various
prompts, and the inter-state branch logic may all be spec-
ified in a graphical environment. This greatly speeds the
process of dialogue development.

6. SPEECH SYNTHESIS

The speech synthesis component is widely considered to
be one of the most important factors influencing the user’s
perception of the system’s overall quality. General text-to-
speech (TTS) systems synthesise speech from unrestricted
input text, and would seem to be an obvious choice. How-
ever all but the most sophisticated TTS systems fall well
short of the voice quality required for commercial ac-
ceptance. Furthermore this type of speech synthesis is
presently not viable in Afrikaans and Xhosa, since the lin-
guistic resources required for inferring the phonetic and
prosodic properties of the spoken utterance from the text
do not yet exist. Such resources would for example in-
clude models that predict phoneme intonation and duration
as well as lexical and syntactic stress by taking account of
phonetic, syllabic, lexical and grammatical context.

We have traded the flexibility of TTS systems for the higher
quality achievable using limited-domain concatenative
synthesis. This is made possible by the highly constrained
nature of the set of utterances that need to be synthesised



for a given dialogue. In particular, the finite-state structure
of our dialogues allows the entire set of possible sentences
that may have to be produced to be determined in advance.

When system prompts consist of fixed sentences, they are
termed static and can be “synthesised” by simple playback
of a static recording. When sentences contain variable in-
formation, such as dates, digit-strings and money amounts,
they are referred to as dynamic. For example, the follow-
ing dynamic prompt is used to confirm the cost of the hotel
booking (in English and Xhosa):

• So for <integer> nights, that’s a total cost of
<money>.

• Ngamagumbi <integer ama> anebhedi enye ax-
abisa i-<money> lilinye.

For dynamic prompts one could in principle enumerate and
record all possible combinations. However this would re-
quire an extremely large number of recordings even for a
relatively simple dialogue system. Instead we select a sub-
set of sentences that contains every word in the dialogue in
each of its contexts. We have chosen the context of a word
to mean its successor word, or the following grammatical
break, whichever comes first [15]. Grammatical breaks in-
clude phrase- or utterance-final positions in questions and
statements. This strategy ensures that the recordings cover
all words used by the dialogue in all required prosodic and
cross-word phonetic contexts.

The sentences in our chosen subset were recorded and sub-
sequently annotated with time-aligned phonetic transcrip-
tions. These were obtained by means of forced alignment,
a technique also used extensively for speech recognition.
Since our recorded sets are typically quite small, and these
automatic methods work better with larger data sets, a num-
ber of errors had to be corrected by hand. Our hotel reser-
vation system required approximately 300 recordings to be
made in each of the three languages. We have found that the
careful design and annotation of the recorded utterances to
a very large extent determines the quality of the synthesised
voice.

Speech synthesis now proceeds by selecting and concate-
nating appropriate short waveform segments from this set
of recordings [5, 8]. We employ the Festival [3, 4] open
source speech synthesis engine and toolkit for this purpose.
For each system prompt, this synthesiser constructs a net-
work of possible waveform segments with which the de-
sired speech can be generated. A Viterbi search through this
network subsequently finds the optimal sequence of candi-
date segments. A Euclidean distance measure at segment
edges gives an indication of how perceptible the concatena-
tion will be. This distance is combined with the differences
in pitch and energy in a weighted sum to give a measure of
the quality of each concatenation point. The Viterbi search
uses this measure to compare competing paths through the
network. Waveform segments that already happen to be
consecutive are assigned a concatenation cost of zero. This
biases the algorithm to greedily select longer consecutive
waveform sections from the recordings.

By annotating the recordings at a phonetic level, we allow
the algorithm greater freedom in choosing concatenation
points. However, valid concatenation points are restricted
to candidates occurring in the same phoneme of the same
word in the two source waveforms. This restriction ensures
that prosody is best preserved during the concatenation pro-
cess.

A further reduction in the number of required recordings
can be achieved by separating common prefixes and suf-
fixes from word stems. These fragments are in effect treated
as separate words in the process outlined above. This was
especially useful for Xhosa due to its conjunctive structure.

Since the synthesised speech consists of concatenated por-
tions of recorded speech, the voice is very human-like,
which cannot be said for many TTS systems. Furthermore,
the constraint that concatenated waveform segments must
originate from the correct word-level context preserves the
natural intonation and rhythm. In this way the difficult
problem of computing the correct prosody is circumvented.
For example, digit strings are read with a natural tempo
and intonation pattern, unlike many voice-mail and direc-
tory enquiry playback systems that employ simple context-
insensitive concatenation of isolated digits. The disadvan-
tage of constrained concatenative speech synthesis is that
new recordings must be made and a new voice built for
each dialogue and perhaps even for extensions to existing
dialogues.

7. APPLICATION EXECUTION FLOW

The four managers described in the previous sections are
initialised prior to a telephone call being accepted by the
dialogue system. The subsequent interaction between the
software components occurs in the following manner.

1. The telephony manager detects an incoming call and
reports this to the system manager.

2. The system manager initialises and configures a dia-
logue controller, which in turn requests the telephony
manager to accept the call.

3. The dialogue controller enters the first dialogue state.
It requests the prompt generation manager to gener-
ate the speech waveform for that state’s main prompt.

4. The prompt generation manager generates the re-
quired waveform and passes it to the dialogue con-
troller.

5. The dialogue controller passes the waveform to the
telephony manager and requests that it be played to
the user.

6. The telephony manager plays the prompt to the user.

7. If no user speech is expected in the current dialogue
state, the dialogue controller branches to step 10. If
user speech is expected, the dialogue controller in-
structs the telephony manager to listen for user utter-
ances.



8. The telephony manager informs the dialogue con-
troller whether a user utterance was detected and if
so relays it to the recognition manager.

9. The recognition manager recognizes and interprets
the speech and sets appropriate variables to reflect
this interpretation. It then passes these variables to
the dialogue controller.

10. The dialogue controller uses the variables passed to it
by the recognition manager (if speech was detected)
as well as the information in its database to decide on
the most appropriate next dialogue state. This state is
entered and execution branches to step 4.

8. THE HOTEL RESERVATION DIALOGUE SYSTEM

We have chosen a hotel-reservation task to test and demon-
strate our dialogue system technology. The system allows a
user to negotiate a fictitious hotel booking by telephone.

We have adopted a system-directed dialogue strategy in
our prototypes. This means that the system actively main-
tains the initiative during the dialogue, while the role of the
user is reactive. In this way the natural language under-
standing process is simplified, since it is not necessary for
the system to guess the user’s intention. Rather, the user is
assumed to react immediately to the most recent prompt.

The hotel-reservation system operates by successively
prompting the user for information items such as the city,
the name of the hotel, the arrival and departure dates, the
type of room, and the user’s credit card details. It main-
tains a database of hotel-specific information, from which
it determines room availability and pricing, and in which it
stores a new booking.

Three separate systems were developed, operating in
Afrikaans, South African English and Xhosa respectively.
The English system was developed first. Initial prototypes
were iteratively refined by observing their performance and
the reactions of users during Wizard-of-Oz tests [7] and
subsequently during full system trials. In this way the qual-
ity of the system was gradually improved. In particular,
the prompts were frequently re-crafted in order to reduce
any ambiguity experienced by the user and thus make his
or her replies more predictable, as explained in section 5.1.
The Afrikaans and Xhosa systems both started out as di-
rect translations of the English system. However substan-
tial individual improvements and optimisations were then
made to both in order to take language and cultural fac-
tors into account. This was found to be very important. In
particular, the directly translated systems without language-
specific customisation were found to perform poorly.

In order to ensure robustness to speech recognition errors
without overly lengthening the dialogue, we have employed
an implicit confirmation strategy wherever possible. In-
stead of verifying each information item with the user be-
fore proceeding, the information is incorporated into the
next prompt. The user can then interrupt the system and

object if he has been misunderstood. Failure to object is in-
terpreted as a confirmation by the system. Due to the elimi-
nation of explicit confirmation states, the total length of the
dialogue is strongly reduced. This leads to greater user sat-
isfaction since the dialogue can be completed more quickly.

The same fairly simple dialogue structure employing 42
states was used for each of the three languages. A state flow
diagram as well as brief description of each dialogue state
is given in the appendix. In its current form our system
is not intended for commercial application, but serves as
an easily-understood example which is nevertheless suffi-
ciently complex for us to test our technology as well as per-
form some comparative analysis across the three languages.

9. SYSTEM EVALUATION

Our best Afrikaans, English and Xhosa systems were tested
by requesting a set of volunteers to call the system and make
a hotel reservation. The volunteers consisted of University
staff and students, and each was presented with an infor-
mation sheet describing the operation of the system before
being asked to place a call. The calls were subsequently
analysed and the results are presented in the following.

Table 2 describes the overall performance of each system.
It is evident that, although the average number of utter-
ances made per call is approximately the same for all three
systems, the average duration of calls made to the Xhosa
system is much longer than for the Afrikaans and English
systems. Xhosa users showed a tendency to use longer
sentences in their replies than their Afrikaans and English
counterparts.

The last row of Table 2 shows the number of users who ex-
perienced difficulty in using the system, lost patience and
terminated their calls. Analysis of the call logs indicate that
in approximately 20% of cases these problems were caused
by loud and frequent background noises which lead to se-
vere speech recognition errors. In the remaining cases fail-
ure was mainly due to persistently errorful recognition for
the speaker in question.

System English Xhosa Afrikaans

Total Calls 77 76 78

Average call duration (sec) 267 391 273

Recorded utterances 2326 2246 2326

Average utterances per call 30.2 29.5 29.8

Successful reservations 60 (78%) 53 (70%) 65 (83%)

Unsuccessful calls 17 (22%) 23 (30%) 13 (17%)

Table 2: Overall system performance during user trials.

Table 3 summarises the performance of the three systems
on a per-state basis, showing the total number of times each
dialogue state was entered as well as the recognition per-
formance in each. The appendix presents a brief descrip-
tion of each dialogue state, as well as a state flow diagram.
All user utterances collected during the usability tests were
later marked as exactly correct, conceptually correct, in-
correct or noise depending on what the recording of the



State English Xhosa Afrikaans
name #Utts Exact Concept #Utts Exact Concept #Utts Exact Concept

ArrivalDate 130 44% 57% 126 22% 43% 109 72% 77%
CardExpiry 134 38% 48% 91 39% 43% 82 63% 65%
CardType 114 62% 76% 67 80% 86% 83 77% 83%
Change 12 92% 92% 2 100% 100% 6 83% 100%
City 136 78% 85% 155 82% 92% 103 96% 97%
ConfirmGoodbye 51 90% 90% 8 100% 100% 8 100% 100%
ConfirmOperator 38 84% 92% 42 57% 86% 60 75% 82%
DepartureDate 155 65% 71% 260 30% 40% 141 63% 73%
DepartureDouble 100 74% 90% 120 42% 60% 110 54% 61%
DoubleConfirm 99 67% 86% 91 61% 88% 109 58% 65%
DoubleRooms 57 91% 97% 125 6% 23% 87 92% 92%
End 71 71% 83% 72 80% 89% 69 89% 96%
GlobalConfirm 91 96% 96% 73 78% 81% 95 97% 99%
Hotel 124 68% 83% 161 42% 62% 145 37% 59%
HotelInfo 84 82% 94% 93 80% 88% 95 89% 93%
Introduction 124 74% 78% 73 67% 77% 105 83% 87%
Restart 6 100% 100% 2 50% 50% 10 90% 90%
RoomsConfirm 73 46% 95% 63 90% 97% 95 72% 86%
SecurityCode 98 59% 61% 66 66% 69% 70 79% 79%
SingleRooms 58 82% 86% 22 22% 27% 80 88% 90%
ccCard1 95 60% 61% 81 41% 58% 95 64% 64%
ccCard2 131 62% 66% 79 54% 65% 121 52% 52%
ccCard3 126 66% 71% 75 50% 60% 106 57% 59%
ccCard4 121 54% 58% 75 50% 61% 113 57% 58%
ccCardConfirm 86 59% 95% 75 62% 80% 100 75% 88%

OVERALL 2314 66.7% 76.4% 2097 52.0% 64.2% 2197 70.8% 76.0%

Table 3: Per-state performance during usability testing.

user’s utterance contained and whether it was recognized
correctly. Exactly correct indicates that the speech recogni-
tion result corresponded exactly to the words uttered by the
user. When the recognition result did not correspond ex-
actly to the user’s utterance but nevertheless had the same
meaning, it was marked conceptually correct. For example,
while a user had said:

“I’d like to stay at the Mount Elegance”

our system transcribed this as

“I’d like to stay in the Mount Elegance”.

Although a recognition error has occurred, this example
would have been tagged as conceptually correct. This better
reflects overall system performance, since not all recogni-
tion errors lead to conceptual errors and therefore did not
disrupt the dialogue. Table 3 indicates the percentage of
times the system was exactly and conceptually correct.

From Table 3 we see that overall the English system per-
formed best with the Afrikaans system in second place and
the Xhosa system in third. This mirrors the performance
of the acoustic models as reported in section 3. However
it was also found during the dialogue design process that
the English and Afrikaans speakers tended to respond in a
more predictable fashion to the system prompts. In particu-
lar, although the reply to a question can always be phrased
in a large number of ways, English and Afrikaans speak-
ers tended to choose similar ways of doing so respectively.
As pointed out in section 5.1 this makes it easier to design
the recognition and understanding grammars for each state.

Xhosa users, on the other hand, tended to be more indi-
vidual in how they responded to a question. In particular,
it was found that Xhosa users often repeat information al-
ready confirmed in previous dialogue states. For example,
the “Hotel” state prompts only for the name of the hotel.
However many Xhosa users included the name of the city
in their reply although this had already been determined in
the previous state and had also been repeated in the “Hotel”
state’s main prompt as implicit confirmation.

In general, when asked to supply dates, times, numbers
and amounts, Xhosa speakers may elect to reply in English
since this is often a shorter and hence more convenient al-
ternative. For example, the amount:

R2353.20

is most often spoken simply as:

“Two thousand three hundred and fifty three
rand and twenty cents”.

However it could also be spoken as:

“Amawaka amabini anamakhulu amathathu namashumi
amahlanu anesithathu eerandi kunye neesenti

ezingamashumi amabini”,

meaning literally:

“Thousands-that-are-two and hundreds-that-are-three
and tens-that-are-five and three of rands and cents of

tens-that-are-two”.

Although Xhosa speakers almost always choose English to
speak longer amounts and numbers such as used in the



above example, this is not true for shorter numbers like
those occurring in dates or those used to specify the number
of hotel rooms. Hence the “ArrivalDate”, “DepartureDate”,
“SingleRooms” and “DoubleRooms” states, for example,
must accept replies in both Xhosa and English. Conse-
quently these states have more complex recognition and un-
derstanding grammars for the Xhosa dialogue system than
they do for the Afrikaans and English systems. This in turn
has led to poorer Xhosa per-state recognition performance,
as reflected in Table 3.

10. SUMMARY AND CONCLUSIONS

This paper has described the architecture and performance
of a spoken dialogue system operating in Afrikaans, South
African English and Xhosa. It has been found that the same
basic dialogue structure can be used successfully in each of
the three languages. In particular a spoken dialogue system
operating in Xhosa has been demonstrated to be feasible for
the first time.

Experience gathered during system development and the
subsequent quantitive comparison of the systems’ perfor-
mance indicates that the responses of Xhosa users tend to be
longer and more varied that those of Afrikaans and English
users. Furthermore, Xhosa speakers may switch to English
when providing numerical information such as dates, times,
numbers and amounts. This means that the careful design
of the dialogue structure and especially the state prompts
and grammars is particularly critical for Xhosa systems.
Whether this can be concluded for other African languages
is the subject of current research. In particular, we will
place further focus on the importance and effect of bilin-
gualism and code-mixing in the context of South African
spoken dialogue systems. Multilingual speech recognition
as well as language and accent identification are two partic-
ular aspects that are relevant in this regard.

11. ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their con-
structive comments,

12. REFERENCES

[1] E. Barnard, A. Halberstadt, C. Kotelly, and
M. Phillips. “A consistent approach to designing
spoken-dialog systems”. In Proc. ASRU, pages 363–
368, Keystone, Colorado, USA, 1999.

[2] N.O. Bernsen, L. Dybkjaer, and H. Dybkjaer. “Prin-
ciples for the design of cooperative spoken human-
machine dialogue”. In Proc. ICSLP, pages 729–732,
Philadelphia, USA, 1996.

[3] A.W. Black and K.A. Lenzo. “Limited domain syn-
thesis”. In Proc. ICSLP, Beijing, China, 2000.

[4] A.W. Black and K.A. Lenzo. http://www.festvox.org/,
June 2004.

[5] A.W. Black and P. Taylor. “Automatically clustering
similar units for unit selection in speech synthesis”. In
Proc. Eurospeech, Rhodes, Greece, 1997.

[6] R. Carlson and S. Hunnicutt. “Generic and domain-
specific aspects of the waxholm NLP and dialog mod-
ules”. In Proc. ICSLP, pages 677–680, Philadelphia,
USA, 1996.

[7] H. Dybkjaer, N.O. Bernsen, and L. Dybkjaer.
“Wizard-of-Oz and the trade-off between naturalness
and recogniser constraints”. In Proc. Eurospeech,
pages 947–950, Berlin, Germany, 1993.

[8] A. Hunt and A.W. Black. “Unit selection in a speech
synthesis system using a large speech corpus”. In
Proc. ICASSP, Atlanta, USA, 1996.

[9] D. Jurafsky, C. Wooters, G. Tajchman, J. Segal,
A. Stolcke, E. Fosler, and N. Morgan. “The Berke-
ley Restaurant Project”. In Proc. ICSLP, pages 2139–
2142, Yokohama, Japan, 1994.

[10] L.F. Lamel and J.L. Gauvain. “High perfor-
mance speaker-independent phone recognition using
CDHMM”. In Proc. Eurospeech, pages 121–124,
Berlin, Germany, 1993.

[11] M.F. McTear. “Modelling spoken dialogues with
state transition diagrams: experiences with the CSLU
toolkit”. In Proc. ICSLP, Sydney, Australia, 1998.

[12] T.R. Niesler and P.H. Louw. “Comparative phonetic
analysis and phoneme recognition for Afrikaans, En-
glish and Xhosa using the African Speech Technology
telephone speech databases”. South African Computer
Journal, 32:3–12, June 2004.

[13] T.R. Niesler and J.C. Roux. “Natural language un-
derstanding in the DACST-AST dialogue system”.
In Proceedings of the twelfth annual symposium of
the Pattern Recognition Association of South Africa
(PRASA), pages 134–136, Franchhoek, South Africa,
November 2001.

[14] J.C. Roux, P.H. Louw, and T.R. Niesler. “The African
Speech Technology project: An assessment”. In
Proc. LREC, volume 1, pages 93–96, Lisbon, Portu-
gal, 1998.

[15] J. P. H. van Santen and A. L. Buchsbaum. “Meth-
ods for optimal text selection”. In Proc. Eurospeech,
pages 553–556, Rhodes, Greece, 1997.

[16] S.J. Young. Token passing, a simple conceptual model
for connected speech recognition systems. Technical
Report TR38, Cambridge University, 1989.

[17] S.J. Young, D. Kershaw, J. Odell, D. Ollason,
V. Valtchev, and P. Woodland. The HTK book, ver-
sion 2.2. Entropic, 1999.



APPENDIX A

This appendix describes the overall structure and working
of the hotel-reservation dialogue. A state flow diagram for
the dialogue is shown in in Figure 3, while the following
gives a brief description of the function of each state.

• Welcome - This is the entry point of the dialogue. A
short welcoming prompt is played to the user.

• Introduction - This state immediately follows the
Welcome state and outlines the most important as-
pects of the system.

• Tips - Here the user is given more detailed informa-
tion on how to use the system. The user is asked
whether he would like to hear this information in the
Introduction state.

• Start - The user is informed that the booking process
is about to begin and that he should have all the nec-
essary information at hand.

• City - The user is supplied with a list of cities in
which hotels are available, and is asked to name the
one in which he would like to stay.

• Hotel - The user is supplied with a list of available
hotels in the specified city. The name of the city is
included in the prompt as implicit confirmation.

• InvalidHotel - The user is informed that the hotel he
has chosen is not in the city he has chosen.

• HotelInfo - The user is asked whether he would like
further information regarding the selected hotel. The
name of the hotel is included in the prompt as implicit
confirmation.

• InfoOnHotel - Further information on the selected
hotel is played to the user.

• ArrivalDate - The date of arrival is acquired from the
user.

• InvalidArrDate - The user is informed that an invalid
arrival date has been specified. This occurs for ex-
ample when the date does not exist (such as the thirty
first of February) or when it is already in the past.

• DepartureDate - The departure date is acquired from
the user. The arrival date is included in the prompt as
implicit confirmation.

• InvalidDepDate - The user is informed that an invalid
departure date has been specified. This occurs when
the date does not exist, or when it precedes the arrival
date.

• DepartureDouble - The user is asked whether he
would like any double rooms. The departure date is
included in the prompt as implicit confirmation.

• DoubleRooms - The user is asked how many double
rooms he would like to book.

• DoubleConfirm - The user is asked whether he would
like any single rooms. The number of double rooms
is included in the prompt as implicit confirmation.

• SingleRooms - The user is asked how many single
rooms he would like to book.

• GlobalConfirmation - The user is informed that the
system is checking for availability of the rooms. The
number of single rooms is included in the prompt as
implicit confirmation.

• ZeroRooms - The user is informed that he has chosen
to book a total of zero rooms.

• NoRooms - The user is informed that the desired
booking is not possible due to insufficient room avail-
ability.

• Change - The user is asked whether he would like to
amend his booking.

• RoomsConfirm - The details of the booking are con-
firmed explicitly. The total length of stay and the cost
are stated and the user is asked whether this is satis-
factory.

• CardNoIntro - The user is notified that the credit card
details will be asked for next.

• ccCard1,2,3,4 - These four states prompt the user to
state the first, second, third and fourth group of four
digits of the credit card number respectively. The 16-
digit number was broken up into four groups of four
in order to aid error recovery.

• ccCardConfirm - The credit card number is con-
firmed explicitly.

• RetryccCard - This state is entered when the user no-
tifies the system that the credit card number has not
been recognised correctly.

• CardHolder - The user is asked to specify the name
of the card-holder. This speech item is logged only
(no speech recognition is attempted).

• SecurityCode - The user is asked to read the credit
card’s security code.

• InvalidSecCode - The user is informed that he has
specified an invalid security code.

• CardType - The user is asked to specify the type of
credit card (e.g. Mastercard).

• CardExpiry - The user is asked to specify the expiry
date of the credit card.

• InvalidExpiry - The user is informed that an invalid
expiry date has been specified.

• ExpiredCard - The user is informed that his credit
card has already expired.

• ReservationNumber - The user is informed that the
booking has been completed successfully and is
given a reservation number.

• End - The user is asked whether he would like to
make another booking.

• Goodbye - This is the final state of the dialogue. The
user is thanked and greeted, after which the call is
terminated.



user wants tips

user wants to start new booking

invalid
hotel name

user wants
hotel info

invalid date

invalid date

user

number
specifies

user specifies
number

double rooms
user wants

user wants single rooms

user specifies
number

no rooms
selected

user wants
to finish

us
er

 w
an

ts
 to

 m
ak

e 
an

ot
he

r 
bo

ok
in

g

us
er

 w
an

ts
 to

 c
ha

ng
e 

bo
ok

in
g

available
sufficient rooms

us
er

 s
at

is
fi

ed

us
er

 u
ns

at
is

fi
ed

user
unsatisfied

digits 13−16

expired
invalid
date

card

rooms available
insufficient

card
details

valid

valid
code

invalid
code

user 
specifies
city

user 
specifies
hotel name

user 
specifies
date

user 
specifies
date

user
wants
operator

digits 1−4

digits 5−8

digits 9−12

card number
card number

valid credit
invalid credit

Introduction Tips

Hotel

Restart

Expiry

ccCard

HotelInfo

Arrival

Departure

Departure

Global Expiry

Hotel

Card Invalid

Retry

InfoOnHotel

CardInvalid

DepDate
CardNo Holder

ccCard

Security
CodeSecCode

Double

Confirm
Double

Rooms
Zero

NoRooms
Change

Goodbye Terminate

Rooms
Confirm

Rooms
Single

Double
Rooms

Invalid

Invalid
ArrDate

Invalid

Hold

Card

Invalid

Type

Expired

ccCard2

Reservation

End

ccCard3

ccCard4

ccCard1

CardNo
Intro

Card

Number

Confirmation

Terminate

Confirm

Welcome

Start

City

Date

Date

Figure 3: Dialogue state flow diagram of the Hotel Reservation System.


