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Abstract
We present a decision tree-based viseme clustering technique
that allows visual speech synthesis after training on a small
dataset of phonetically-annotated audiovisual speech. The de-
cision trees allow improved viseme grouping by incorporating
k-means clustering into the training algorithm.
The use of overlapping dynamic visemes, defined by tri-phone
time-varying oral pose boundaries, allows improved modelling
of coarticulation effects. We show that our approach leads to
a clear improvement over a comparable baseline in perceptual
tests.
The avatar is based on the freely available MakeHuman and
Blender software components.
Index Terms: conversational agent, talking head, visual speech
synthesis, lip animation, coarticulation modelling, CART-based
viseme clustering, audio-visual speech data corpus.

1. Introduction
Interaction with sophisticated technologies is increasing the de-
mand for more natural and human-like communication in user
interfaces. Part of this movement looks towards virtual avatars
as a medium for intuitive, human-like conversational agents.
Visual speech synthesis (VSS) plays a critical part in this drive.
The work we present here focuses on advancing methods for
VSS in computer animated characters.
A phoneme is a classification of a distinct speech sound unit,
based on the place and method of articulation. Phonemes
can themselves be grouped based on their visual articula-
tion and their pronunciation attributes. When phonemes
are grouped based on visually-similar attributes, they are re-
ferred to as visemes, a contraction of the words “visual” and
“phoneme” [1]. Visemes do not have a one-to-one relation to
phonemes [2]. This is due to the inertia of articulatory organs
as the shape of the mouth is greatly affected by the articulation
of the surrounding units of speech [3]. It is critical to consider
this dominance of vocal articulators and their effects on visual
speech segments in VSS [4]. It is for this reason that we have
chosen to use dynamic visemes.
The dynamic visemes employed in this paper are an adaptation
of those described in [5]. Dynamic visemes do not represent
a fixed-point pose, but rather a trajectory describing the evolu-
tion of displacement with time. We introduce dynamic visemes
that are bound to groups of three separate phones (tri-phones).
During synthesis, the overlapping dynamic visemes are con-
catenated using a weighted transition function.
A recent and successful approach to phoneme-to-viseme map-
ping makes use of classification and regression trees (CART) [6,
7]. Here, clusters of visemes are recursively subdivided based

on questions regarding their phonetic properties with the aim
of maximising within cluster viseme similarity. We present, on
extension to this, a decision tree approach which incorporates
k-means clustering to improve viseme similarity.
Gathering all possible examples of naturally occurring tri-phone
arrangements would require a huge database. Further more,
phonetic annotation is time consuming and expensive. There-
fore, our VSS system is based on freely available software com-
ponents and has been developed and tested using a small dataset
and consumer audiovisual equipment. It may therefore be of in-
terest in situations where resources such as annotated data are
scarce. For these reasons we have chosen to use a more simplis-
tic model for VSS, whose configuration requires minimal input
data.

2. Data
Audiovisual data was captured from a single speaker reading the
first 120 sentences (approximately 10 minutes of speech) from
the TIMIT corpus [8]. The motivation for using TIMIT is that
the sentences it contains are designed to be phonetically diverse,
and cover a broad variety of phoneme sequences. A Panasonic
HDC-TM900 video camera, at 1920x1080 resolution and 25
frames per second, was used during recordings. The head was
stabilised and a mirror, set at a 45◦ angle, was included for a
side view of the face, as shown in Figure 1.

2.1. Phonetic annotation

The audio tracks were segmented and hand labelled using Praat,
a speech analysis software [9]. The extended speech assessment
methods phonetic alphabet (X-SAMPA) was used for phonetic
annotation. Hand labelling was done by a phonetic and ortho-
graphic transcription specialist to ensure accuracy and consis-
tency.

2.2. Feature tracking

Figure 1 shows a frame taken from a recorded sentence in which
the facial markers have been identified. Markers on the nose,
chin, centre of the top and bottom lip and the left and right cor-
ners of the lips were tracked. These six facial feature markers
were chosen based on experimentation with animated character
motion capture, discussed in Section 3.
The tracking algorithm detects and identifies the white markers’
horizontal and vertical positions using relative and previous lo-
cations. All trajectories were subsequently manually checked
for accuracy. The trajectories of the facial feature markers were
normalised relative to the nose, because its movements corre-
lated with those of the performers. We did not capture or model



Figure 1: Facial feature marker trajectory tracking.

the articulatory movements of the tongue.

2.3. Data processing

The full corpus consists of the original video recordings, X-
SAMPA phonetic annotations (including the timing of the pho-
netic segment boundaries), audio recordings and time-position
trajectories for the five features (relative to the nose). The cor-
pus was processed to create a training dataset containing, for
each feature, a list of all tri-phone labels, tri-phone duration,
true or false values for articulatory phonetic properties (e.g.
vowel, schwa, alveolar, fricative, pause etc.) and time-position
trajectories, referred to as dynamic visemes in the context of
this work. The dynamic visemes were obtained by sampling
the marker trajectories of each tri-phone at ten uniformly spaced
instances.

3. Animating captured motion
The open source 3D computer graphics software MakeHuman
1.0.2 [10] and Blender 2.70 [11] were used to create and an-
imate the avatars. MakeHuman provides realistic, customis-
able humanoid character models, which can be imported into
the Blender Game Engine (BGE).
Anatomically correct physics-based muscle and skin simulation
can produce good VSS, as demonstrated in [12]. This process
is very complex. However, we have chosen a much simpler ap-
proach that, nevertheless, leads to good results. Our solution
uses the rig provided by the MakeHuman model, applying bone
driven shape key animation based on tracked feature trajecto-
ries.
Rigging is the process of creating a skeleton-like system that
consists of bones with which the character can be animated.
The function of the bones in a rigged character has been de-
scribed as “digital orthopaedics”, because bones manipulate the
areas of the character’s mesh to which they are bound, in a way
that is reminiscent of how human bones manipulate skin [13].
However, the interaction of multiple bone driven animations be-
comes cumbersome when trying to achieve the mesh deforma-
tions necessary to mimic the subtle facial movements required
for speech. Our solution was to use the shape keys (also known
as morph targets or blend shapes) provided by MakeHuman.
Animation artists use shape keys to create a library of charac-
ter mesh deformations with which to speed up animation pro-
cesses [13]. A shape key is created by saving the deformation of
the character’s mesh relative to its neutral state. It is then possi-

Figure 2: Example of bone driven shape key animation interpo-
lating between the neutral and open jaw pose.

ble to interpolate between the neutral and fully-formed poses of
the characters [13]. In the BGE, bones can be used as a proxy
to drive the shape keys using a process known as bone driven
shape key animation, illustrated in Figure 2 [14]. This process
of data-driven animation allows for the motion of the face, cap-
tured by the marker trajectories, to be mimicked on the avatar’s
face. The displacement of the facial markers is used to gov-
ern the shape key animation values that manipulate the avatar’s
mesh, thereby creating the equivalent pose on the avatar’s face.
The trajectories of the markers at the top, bottom, left and right
corners of the mouth, and the chin marker, were scaled to drive
shape keys that produced equivalent animations on the avatar.
For example, the shape key animation for mouth pursing used
the width between the mouth corner markers to animate “O”-
shaped poses. To animate bottom lip roll (mouth eversion), the
bottom lip to chin distance was used. When compared with tra-
ditional motion capture or bone driven animation, our resultant
system has the advantage of allowing trajectories to be mim-
icked using any MakeHuman model.

4. Minimum deviation decision trees
In this section we describe the decision tree-based viseme
clustering methods first proposed in [6], and subsequently ex-
panded to many-to-many phoneme-to-viseme mappings in [7].
Both contributions discuss the application of regression trees to
the grouping of static visemes. Clusters of static visemes are
split by querying their phonetic context or properties. Figure 3
illustrates the decision tree training algorithm extended to use
our dynamic visemes. Since the decision tree algorithms test
more than one attribute when attempting to split a group of
visemes in a leaf node, they can be classified as multivariate
CART algorithms [15, 16, 17].
The decision tree described in [7] applies all possible phonetic
context questions to the static visemes grouped in a decision
tree’s leaf node. The algorithm then measures how homo-
geneous the resulting child nodes are. An active appearance
model (AAM) is used for automatic markerless facial tracking,
generating the parameters that numerically describe the static
visemes.
Equation 1 is applied to each phoneme instance pi in a leaf
node, where d(pi, pj) is the Euclidean distance between
instances pi and pj and N is the number of phonemes in the
node. The smallest value µbest and variance σbest are then
selected. Equation 2 is then used to determine the subset
impurity IZ , in which λ is a scaling factor. This procedure is
repeated to find the question whose subset best minimizes the
impurity of the AAM parameters in the child nodes.



Figure 3: Illustration of the intended resultant effect of phonet-
ically grouped dynamic visemes. Static visemes, as used in [7],
would be represented by points of similar displacement in leaf
nodes.

µi =

∑N
j=1 d(pi, pj)

N − 1
(1)

IZ = N × (µbest + λ× σbest) (2)
Our baseline is an adaptation of the work described above. We
consider time-dependent visemes, and measure all distances rel-
ative to a mean viseme calculated using Equation 3. We then
minimise the average deviation DAvg from this mean to split
the leaf nodes, using Equation 4. This alleviates the need for
an arbitrary scaling factor. This process is repeated for every
possible phonetic question. The question resulting in subsets
with minimum average deviation in their constituent dynamic
viseme subset is chosen to form the child nodes. A minimum
occupancy count, as well as a minimum reduction in deviation,
are used as stopping criteria.
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1
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M
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N

N∑
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5. k-means decision trees
We now present an alternative way of choosing optimal decision
tree questions. We use k-means clustering [18], with k = 2,
to classify similar dynamic visemes in a parent node. A sep-
arate CART then tries to find the phonetic attribute question
which would split the data into subsets that best match these
two classes. For this, entropy was used as an impurity mea-
sure for discriminating information gain between phonetic at-
tributes [19].
Entropy of a set H(S), is dependant on the number of elements
of each discrete class xi in the class domain (x1, x2), as out-
lined in Equation 5. High entropy is defined by having a large
portion p of elements of a class appearing in a set. Informa-
tion gain IG is calculated by finding the entropy difference be-
tween subsets and the original set. Subsets are created by asking

Figure 4: Illustration of how the k-means (k=2) classifier is
used to choose questions and grow a decision tree. The CART
classification algorithm finds the question that splits the dy-
namic visemes into two nodes that best match the clusters pro-
duced by the k-means algorithm.

all phonetic questions. The discrete attribute phonetic question
PQ resulting in the set S with maximum information gain is
found using Equation 6. In Equation 6, p(cj) is the proportion
of elements in the child node C to the number of elements in
the parent node P .

H(x1,2, S) = −
∑

xi∈(x1,x2)

p(xj) log2 p(xi) (5)

argmaxIG(PQ, S) = H(P )−
∑

cj∈(PQ)

p(cj)H(C) (6)

Once the phonetic attribute leading to the greatest information
gain is identified, it is used to split the parent node and popu-
late the child nodes. This process is repeated at each node, as
illustrated in Figure 4. For our k-means CART algorithm, only
the minimum number of dynamic visemes in a parent node was
specified as a stopping criterion.
This method was inspired by the work of DeMartino et al. [20],
who applied k-means clustering to find static poses of fiduciary
points in speech according to geometric similarity. By consider-
ing nonsense CVCV words, a set of context-dependent visemes
could be found for VSS. Our algorithm extends this work by
integrating k-means clustering into a phonetic-based decision
tree.

6. Dynamic viseme concatenation
For synthesis, a sequence of tri-phone labels, as well as tri-
phone start and end times, is provided. For each tri-phone, the
decision tree is traversed and the corresponding mean dynamic
viseme is retrieved from the leaf node. The dynamic visemes
of successive tri-phones are then concatenated using a weighted
concatenation function.
Our tri-phone based visemes overlap each other in thirds. A
weighted concatenation function tapers each viseme in a piece-
wise linear fashion, assigning the greatest weight to the dy-
namic viseme’s centre, as show in Figure 5. The weighting
functions are applied after each dynamic viseme is scaled to
match the duration of the tri-phone in the synthesized utterance.
This weighted concatenation approach was used to prevent
visemes from dominating whole segments of synthesized
speech, while conserving contextual coarticulation effects. The
methods used by [4, 5, 20] interpolate between individual static
or dynamic visemes, which could be problematic if the chosen



Figure 5: Illustration of how three successive dynamic visemes
p[n-1], p[n] and p[n+1] are concatenated to create a feature’s
trajectory. The overlapping portions of the visemes are com-
bined using a linear weighting that accentuates their centres.

viseme misrepresents the speech segment. Our system avoids
this potential pitfall by including the effects of the pre and post
dynamic viseme context during synthesis, therefore capturing
and reproducing more natural coarticulation effects.
The concatenated dynamic visemes are scaled and used to drive
the bone driven shape key animations, as discussed in Section
3.2, to produce synthesized visual speech.

7. Testing and evaluation
Of the 120 sentences in our dataset, twelve were randomly cho-
sen and reserved as an independent test set, and the remaining
108 used for training. The twelve test sentences were synthe-
sized using both minimum deviation and k-means decision tree
algorithms for both objective and subjective evaluations.

7.1. Objective testing

For quantitative analyses, the synthesized feature trajectories
were compared to the original trajectories by calculating an av-
eraged root mean square error (RMSE).
The training set was divided into 12 subsets. Each subset was
then used to synthesize the 12 test sentences. The RMSE was

Figure 6: RMSE using incremental training subsets for mini-
mum deviation algorithm (MDA) and k-means algorithm.

Table 1: RMSE and RMSE standard deviation (STD) using the
twelve random test sentences with 108 training sentences.

Minimum deviation
decision tree

k-means decision
tree

RMSE 0.000491 0.000513
RMSE STD 0.000238 0.000220

calculated by measuring the difference between the synthesized
and original trajectories every 2.4 milliseconds. The RMSE was
averaged over every feature for all 12 test sentences. This cal-
culation was repeated for every subset. The subsets were then
merged into groups of increasing size, and the procedure re-
peated. In this way 1, 2, 3, 6 and 12 (i.e. all) subsets were used
as training material.
Figure 6 shows the RMSE as a function of training set. Ta-
ble 1 reveals the RMSE and standard deviation when using all
108 sentences for training. From these results it can be seen
that both algorithms show continuous improvement as the num-
ber of training sentences increases, with neither clearly outper-
forming the other. Table 1 shows that the minimum deviation
algorithm performed marginally better than our k-means deci-
sion trees, but that the latter had a slightly lower RMSE standard
deviation, indicating better dynamic viseme clustering.

7.2. Subjective testing

The twelve test sentences were also used for subjective eval-
uation in the form of human perceptual tests. Avatars were
animated using both minimum deviation and k-means decision
trees. As a baseline, an avatar was also animated using the tra-
jectories obtained from motion capture directly. Test partici-
pants were required to watch a sequence of videos, each show-
ing 2 of the 3 possible avatars, randomly chosen. In each video,
the first avatar speaks, followed the second, and finally both
speak together, as illustrated in Figure 7. Participants were then
asked to indicate which avatar was perceived to best articulate
the spoken sentence. This was repeated three times for each
sentence, allowing all combinations of avatars to be compared
for each test sentence. In total, each of the 40 test participants
therefore evaluated 12× 3 = 36 videos. Participants were per-
mitted to re-view videos before making a decision. To prevent
guessing, participants could also indicate when they could not
differentiate between the two avatars.
Figure 8 presents the perceptual evaluation results, showing an
improvement of over 12% of our VSS method against the base-
line algorithm. Our method also afforded a more favourable as-
sessment than the minimum deviation algorithm, with approx-
imately 15% improvement, when compared with the motion
capture baseline.

Figure 7: Example frame taken from a video used in the per-
ceptual test. In this case the left and right avatars were driven
by k-means and minimum deviation decision trees, respectively.
The frames show the articulation of the sound “K”.



Figure 8: Perceptual test results comparing direct motion cap-
ture (MOCAP), minimum deviation (MDA) and k-means deci-
sion tree (K-M.CART) avatar animations.

Figure 9: Synthesised chin trajectories for sentence starting:
“Kindergarten children...”. The left and right graphs use the
k-means and minimum deviation decision trees, respectively, to
generate the synthesised blue dashed line. The original chin
trajectory is marked by the solid black line. The vertical green
lines indicate phone boundaries.

7.3. Discussion

The baseline algorithm first splits the nodes based on phonetic
properties, then tries to find the subset whose visemes are
most alike. Our algorithm takes the opposite approach: it
first finds a commonality between the visemes and then asks
which phonetic property would best preserve this. Although the
objective assessment, in terms of RMSE, shows that trajectories
synthesized using the baseline algorithm tend to be spatially
slightly closer to the original trajectories, RMSE may not be
a good indicator for comparing the shape similarity of the
synthesized and original trajectories.
As an example, Figure 9 shows the synthesized chin trajecto-
ries for the two algorithms. The trajectory synthesized by the
minimum deviation algorithm is closer to the original trajectory
in terms of RMSE. However, the shape of the trajectory
synthesized by the k-means decision tree algorithm better
matches that of the original trajectory. This greater qualitative
shape similarity appears to be reflected in the perceptual tests.
It is possible that the use of a non-professional voice actor
affected the intelligibility of the avatars’ speech. With a pro-
fessional, the recordings may have been more enunciated and
better repeated, likely improving dynamic viseme clustering
results and the avatars’ visual speech. An investigation of this
remains for future work.

8. Conclusion and future work
We successfully implemented two improved decision tree algo-
rithms for VSS using dynamic visemes. The trees are trained
using tracked and phonetically-annotated audiovisual data. The
decision trees were subsequently used to synthesize oral feature
trajectories for avatar animation using phonetically-annotated
audio alone.
The proposed algorithm incorporates k-means clustering into
the decision tree training process. Leaf nodes are split into two
child nodes by a process that selects phonetically-based ques-
tions which best agree with the k-means clustering result. In
this way, the selected decision tree questions best explain the
groups seen in the data. The trajectories synthesized using our
decision trees led to a slight increase in mean square error rela-
tive to a baseline. However, perceptual tests showed a clear im-
provement over the same baseline. Furthermore, informal qual-
itative assessment of the trajectories themselves showed that
their character better corresponded to the ground truth, even
through this was not captured by the mean squared error.
The VSS and animation techniques we present have been shown
to work on a small dataset. The algorithms gave good synthesis
results even when trained on just 108 sentences. This dataset is
sparse when compared with the 1199 and 2542 utterances used
in related work [5, 7]. Furthermore, the number of tracked fea-
tures (6) is far smaller than those typically employed in alterna-
tive systems, such as AAMs. Hence, our system may be attrac-
tive in situations where neither advanced video capturing equip-
ment nor a lot of data is available. This is typically the case
in under-resourced language environments, a category in which
much of sub-Saharan Africa falls. By making use of freely-
available software tools, such as MakeHuman and Blender, it is
possible for small research groups in poorly resourced environ-
ments to produce a flexible avatar for use in human-computer
interaction.
Future work will include the addition of tongue data capture
and animation, and the incorporation of multiple facial features
to allow for expressions or gestures typically used in conversa-
tions.
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