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ABSTRACT

We have performed cough detection based on measurements
from an accelerometer attached to the patient’s bed. This
form of monitoring is less intrusive than body-attached ac-
celerometer sensors, and sidesteps privacy concerns encoun-
tered when using audio for cough detection. For our experi-
ments, we have compiled a manually-annotated dataset con-
taining the acceleration signals of approximately 6000 cough
and 68000 non-cough events from 14 adult male patients in
a tuberculosis clinic. As classifiers, we have considered con-
volutional neural networks (CNN), long-short-term-memory
(LSTM) networks, and a residual neural network (Resnet50).
We find that all classifiers are able to distinguish between the
acceleration signals due to coughing and those due to other
activities including sneezing, throat-clearing and movement
in the bed with high accuracy. The Resnet50 performs the
best, achieving an area under the ROC curve (AUC) exceed-
ing 0.98 in cross-validation experiments. We conclude that
high-accuracy cough monitoring based only on measurements
from the accelerometer in a consumer smartphone is possi-
ble. Since the need to gather audio is avoided and therefore
privacy is inherently protected, and since the accelerometer is
attached to the bed and not worn, this form of monitoring may
represent a more convenient and readily accepted method of
long-term patient cough monitoring.

Index Terms— accelerometer, cough detection, Resnet,
CNN, LSTM

1. INTRODUCTION

Coughing is the forceful expulsion of air to clear up the air-
way and a common symptom of respiratory disease [1]. It
can be distinctive in nature and is an important indicator used
by physicians for clinical diagnosis and heath monitoring in
more than 100 respiratory diseases [2], including tuberculosis
(TB) [3], asthma [4] and pertussis [5].
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Automatic cough detection and classification is possible
by applying machine learning algorithms on extracted fea-
tures from cough sounds [6]. It has also been shown to be
possible when using the signals from an accelerometer placed
on the patient’s body [7]. Since the accelerometer is insensi-
tive to environmental and background noise, it can be used
in conjunction with other sensors such as microphones, ECG
and thermistors [8].

A cough monitoring system using a contact microphone
and an accelerometer attached to the participant’s supraster-
nal (jugular) notch has been considered by [9]. This system
allows participants to move around within their homes while
the cough audio and vibration is recorded. In related work, an
ambulatory cough monitoring system using an accelerometer
attached to the skin of the participant’s suprasternal notch us-
ing a bioclusive transparent dressing was developed in [10].
Here the recorded signal is transmitted to a receiver carried in
a pocket or attached to a belt.

Throat-mounted accelerometers have been used success-
fully to detect coughing in [11] and in [12], and an accelerom-
eter placed at the laryngeal prominence (Adam’s apple) in [7].
Two accelerometers, one placed on the abdomen and the sec-
ond on a belt wrapped at dorsal region, have been used to
measure cough rate in the research carried out by [13]. Ab-
dominal placement (between the navel and sternal notch) of
the accelerometer was also investigated in [14], and it was ap-
plied to patients who were children. Finally, multiple sensors,
including ECG, thermistor, chest belt, accelerometer and au-
dio microphones were used for cough detection in [15].

Attaching an accelerometer to the patient’s body is how-
ever inconvenient and intrusive. Thus, we propose the mon-
itoring of coughing based on the signals obtained from the
accelerometer inbuilt in an inexpensive consumer smartphone
firmly attached to the patient’s bed, as shown in Figure 1,
thereby eliminating the need to wear a measuring equipment.
We have trained and evaluated deep neural network (DNN)
classifiers such as convolutional neural networks (CNN),
long-short-term-memory (LSTM) networks, and a residual
neural network (Resnet50) [16] architecture using leave-one-
out cross-validation on a dataset, prepared for this purpose,



which consists of cough and non-cough events such as sneez-
ing, throat-clearing and getting in and out of the bed. The
Resnet50 produces the highest AUC of 0.9888 after 50 epochs
with corresponding accuracy 96.71% and sensitivity 99% for
32 sample (320 msec) long frames and grouping them in
10 segments. This shows that it is possible to discriminate
between cough events and other non-cough events by using
state-of-the-art classifiers such as a Resnet50 architecture;
where the accelerometer is no longer attached to the patient’s
body, rather built inside an inexpensive consumer smartphone
attached to the headboard of the patient’s bed.

2. DATASET PREPARATION

Data collection was performed at a small 24h TB clinic near
Cape Town, South Africa, which can accommodate approx-
imately 10 staff and 30 patients. Each ward has four beds
and can thus accommodate up to four patients at one time.
The overall motivation of our work is to develop a practical
method of automatic cough monitoring for the patients in this
clinic, in order to assist with the monitoring of recovery.

The recording setup is shown in Figure 1. An enclosure
housing an inexpensive consumer smartphone is firmly at-
tached to the back of the headboard of each bed in a ward.
A data gathering Android smartphone application, developed
for this study, continuously monitors the accelerometer and
audio signals from an external microphone (also shown in
Figure 1). The 3-axis accelerometer has a sampling frequency
of 100 Hz and only magnitudes were recorded. This energy-
threshold-based detection for both audio and acceleration sig-
nals results in a large volume of data being captured. In ad-
dition, continuous video recordings were made using ceiling-
mounted cameras in order to assist with data annotation.

This work considers automatic classification of the accel-
eration signals. The audio signals and video recordings were
used only during the manual annotation process in order to
unambiguously confirm the presence or absence of a cough.
We define an ‘event’ to be any detected accelerometer or au-
dio activity. An example of the accelerometer magnitudes
captured for a cough and for a non-cough event are shown
in Figure 2. Annotation was performed using the multimedia
software tool ELAN [17], which allowed easy consolidation
of the audio and video for accurate manual labelling.

Our final dataset, summarised in Table 1, contains approx-
imately 6000 coughs and 68000 non-coughs from 14 adult
male patients totalling 3.16 and 32.20 hours of data respec-
tively. No other information regarding patients are recorded
due to ethical constraints. This dataset was used to train and
evaluate the classifiers within a cross-validation framework.

Table 1 shows that coughs are underrepresented in our
dataset. To compensate for this imbalance, which can detri-
mentally affect machine learning [18, 19], we have applied
SMOTE data balancing during training [20, 21]. This tech-
nique oversamples the minor class by generating synthetic
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Fig. 1. Recording Process: A plastic enclosure housing an
inexpensive smartphone running data gathering software is
attached behind the headboard of each bed. The audio sig-
nal from the external microphone is also monitored, but only
used for the purpose of annotation of the acceleration signal.

Fig. 2. Example accelerometer magnitudes for a cough
event (red) and a non-cough event (blue). In this case, the
non-cough event was the patient moving in the bed.

samples (instead of for example random oversampling).
SMOTE has previously been successfully applied to cough
detection and classification based on audio recordings [22].

3. FEATURE EXTRACTION

Power spectra [23], root mean square value, kurtosis, moving
average and crest factor are extracted from the acceleration



Table 1. Ground Truth Dataset Summary: ‘PATIENTS’:
list of the patients; ‘COUGHS’: number of confirmed cough
events; ‘NON COUGHS’: number of confirmed events that
are not coughs; ‘COUGH TIME’: total amount of time (in
sec) for cough events; ‘NON-COUGH TIME’: total amount
of time (in sec) for non-cough events.

PATIENTS COUGHS NON COUGH NON-
COUGHS TIME COUGH TIME

Patient 1 88 973 169.16 1660.67
Patient 2 63 1111 117.67 1891.92
Patient 3 469 11025 893.91 18797.32
Patient 4 109 9151 204.06 15596.71
Patient 5 97 7826 188.26 13344.98
Patient 6 192 12437 360.72 21197.35
Patient 7 436 14053 825.23 23953.15
Patient 8 368 2977 702.05 5077.89
Patient 9 2816 3856 5345.27 6569.32
Patient 10 649 2579 1236.84 4400.42
Patient 11 205 527 391.42 901.38
Patient 12 213 323 402.61 547.62
Patient 13 213 712 401.61 1211.75
Patient 14 82 455 158.77 777.64
TOTAL 6000 68005 11397.6 115928.12

signals as features for classification. The frame length (Ψ)
and number of segments (C) have been used as the feature
extraction hyperparameters, shown in Table 2 and 4. The in-
put feature matrix, shown in Figure 3 and 4, has the dimension
of (C, Ψ

2 + 5) and power spectra have (Ψ
2 + 1) coefficients.

Table 2. Feature extraction hyperparameters. Frame
lengths (16, 32, 64 samples i.e. 160, 320 and 640 msec long)
overlap in such a way that the number of segments (5 and 10)
are the same for all events in the dataset.

Hyperparameter Description Range

Frame length (Ψ) Size of frames in samples 2k where
in which cough is segmented k = 4, 5, 6

No. of Segments (C) Number of segments in 5, 10which frames were grouped

Frame length (Ψ) used to extract features from accelera-
tion signal is shorter than those generally used to extract fea-
tures from audio [24], because the accelerometer in the smart-
phone (shown in Figure 1) has a lower sampling rate of 100
Hz and longer frames lead to deteriorated performance as the
signal properties can no longer be assumed to be stationary.

4. CLASSIFIER TRAINING

Our dataset contains 14 patients and a leave-one-out cross-
validation scheme [25] has been used to train and evaluate
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Fig. 3. CNN Classifier, trained and evaluated using leave-
one-out cross-validation [25], produces results shown in Table
4 for feature extraction hyperparameters shown in Table 2.
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Fig. 4. LSTM classifier, trained and evaluated using leave-
one-out cross-validation [25], produces results shown in Table
4 for feature extraction hyperparameters in Table 2.

our three DNN classifiers: CNN, LSTM and Resnet50.
The CNN classifier, shown in Figure 3, has been set up

with α1 2D convolutional layers with kernel size α2 and rec-
tified linear units as activation functions. A dropout rate α3

has been applied along with max-pooling, followed by α4

dense layers with rectified linear units as activation functions,
followed by another 8 dense layers, also with rectified linear
units as activation functions.

The LSTM classifier, shown in Figure 4, has been set up
with β1 LSTM units with rectified linear units as activation
functions and a dropout rate α3. Then α4 dense layers have
been applied with rectified linear units as activation functions,
followed by another 8 dense layers also with rectified linear
units as activation functions.

For both LSTM and CNN classifiers, a final softmax func-
tion produces one output for a cough event (i.e. 1) and the
other for a non-cough event (i.e. 0), as shown in Figure 3 and
4. Features are fed into these two classifiers in batch size of
ξ1 for ξ2 number of epochs.

The residual network (Resnet) architecture we trained and
evaluated has 50 layers and has been found to deliver the
state-of-the-art performance in image recognition. We have
replicated the 50-layer architecture used in Table 1 of [16] in
our experiments. Table 3 lists the classifier hyperparameters
that were optimised during leave-one-out cross-validation.



Table 3. CNN & LSTM classifier hyperparameters, opti-
mised using leave-one-out cross-validation and shown in Fig-
ure 3 and 4.

Hyperparameters Classifier Range
Batch Size (ξ1) CNN & LSTM 2k where k = 6, 7, 8

No. of epochs (ξ2) CNN & LSTM 10 to 200 in steps of 20
No. of Conv filters (α1) CNN 3× 2k where k = 3, 4, 5

kernel size (α2) CNN 2 and 3
Dropout rate (α3) CNN & LSTM 0.1 to 0.5 in steps of 0.2

Dense layer size (α4) CNN & LSTM 2k where k = 4, 5

LSTM units (β1) LSTM 2k where k = 6, 7, 8

Learning rate (β2) LSTM 10k where k = −2,−3,−4

Fig. 5. Mean ROC curves for cough detection, for the best
performing DNN classifiers in Table 4. AUC values are aver-
aged over 14 leave-one-patient-out cross-validation folds dur-
ing hyperparameter optimisation. Resnet50 outperforms the
LSTM and CNN over a wide range of operating points and
has achieved the highest accuracy of 96.71%.

5. RESULTS

Table 4 lists the performance achieved by our three DNN clas-
sifiers for the hyperparameters mentioned in Table 2. These
results are averages over the 14 leave-one-patient-out testing
partitions during hyperparameter optimisation.

Table 4 shows that the best-performing CNN uses 64 sam-
ples (640 msec) long frames and 10 number of segments to
achieve an AUC of 0.9499. The optimal LSTM classifier
achieves the slightly higher AUC of 0.9572 when using a
frame length of 32 samples (320 msec) and 10 number of
segments. However, the best performance is achieved by the
Resnet50 architecture, with an AUC of 0.9888 after 50 epochs
from 32 samples (320 msec) long frames and 10 number of
segments. Figure 5 shows the mean ROC curves for the opti-
mal CNN, LSTM and Resnet50 configurations shown in Ta-
ble 4, where the means were calculated over the 14 cross-
validation folds. The Resnet50 classifier is superior to the
other two classifiers over a wide range of operating points.

Table 4. Leave-one-out cross-validation results for DNN
classifiers. The values are averaged over 14 cross-validation
folds.

Frame Seg Clas- Mean Mean Mean Mean
(Ψ) (C) -sifier Spec Sens Accuracy AUC
16 5 CNN 83% 86% 84.55% 0.9243
16 10 CNN 87% 84% 85.66% 0.9358
32 5 CNN 76% 93% 84.47% 0.9272
32 10 CNN 84% 86% 85.25% 0.9324
64 5 CNN 85% 87% 86.31% 0.9339
64 10 CNN 91% 80% 85.82% 0.9499
16 5 LSTM 84% 91% 87.58% 0.9444
16 10 LSTM 85% 92% 88.32% 0.9504
32 5 LSTM 79% 95% 87.1% 0.9457
32 10 LSTM 86% 93% 89.21% 0.9572
64 5 LSTM 84% 93% 88.68% 0.954
64 10 LSTM 86% 89% 87.66% 0.9489
16 5 Resnet50 93% 98% 95.43% 0.9802
16 10 Resnet50 94% 99% 96.35% 0.9812
32 5 Resnet50 94% 99% 96.54% 0.9810
32 10 Resnet50 94% 99% 96.71% 0.9888
64 5 Resnet50 94% 99% 96.35% 0.9854
64 10 Resnet50 95% 98% 96.46% 0.9884

6. CONCLUSION AND FUTURE WORK

A deep neural network based cough detector is able to accu-
rately discriminate between the accelerometer measurements
due to coughing and due to other movements as captured
by a consumer smartphone attached to a patient’s bed. The
best system, using the Resnet50 architecture, achieves an
AUC of 0.9888. These experimental results are based on
a specially-compiled corpus of manually-annotated acceler-
ation measurements, including approximately 6000 cough
and 68000 non-cough events, gathered from 14 patients in
a small TB clinic. Although accelerometer-based detection
of coughing has been considered before, it has always made
use of sensors worn by the patient, which is in some respects
intrusive and can be inconvenient. We have shown that ex-
cellent discrimination is also possible when the sensor is
attached to the patient’s bed. This presents a less intrusive
method of cough monitoring, which can be of practical use in
monitoring the recovery process of patients, for example in
the clinic where the data was collected. Acceleration-based
monitoring also has important privacy advantages over the
detection of cough sounds by audio- based monitoring, which
often raises privacy concerns, and we have found patients
to be uncomfortable in the presence of audio-based moni-
toring equipment. Accelerometer-based monitoring, using a
bed-mounted inexpensive consumer smartphone, represents a
more discreet and also cost-effective alternative.

In ongoing work, we are attempting to optimise some of
the Resnet50 metaparameters and also to incorporate audio
[26] along with accelerometer measurements with a view to
further improvement on cough detection results.
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