
Multilingual Bottleneck Features for Improving ASR Performance of
Code-Switched Speech in Under-Resourced Languages

Trideba Padhi, Astik Biswas, Febe de Wet, Ewald van der Westhuizen & Thomas Niesler

Department of Electrical and Electronic Engineering, Stellenbosch University
Stellenbosch, South Africa

{tpadhi, abiswas, fdw, ewaldvdw & trn}@sun.ac.za

Abstract

In this work, we explore the benefits of using multilingual
bottleneck features (mBNF) in acoustic modelling for the au-
tomatic speech recognition of code-switched (CS) speech in
African languages. The unavailability of annotated corpora in
the languages of interest has always been a primary challenge
when developing speech recognition systems for this severely
under-resourced type of speech. Hence, it is worthwhile to
investigate the potential of using speech corpora available for
other better-resourced languages to improve speech recognition
performance. To achieve this, we train a mBNF extractor us-
ing nine Southern Bantu languages that form part of the freely-
available multilingual NCHLT corpus. We append these mB-
NFs to the existing MFCCs, pitch features and i-vectors to train
acoustic models for automatic speech recognition (ASR) in the
target code-switched languages. Our results show that the inclu-
sion of the mBNF features leads to clear performance improve-
ments over a baseline trained without the mBNFs for code-
switched English-isiZulu, English-isiXhosa, English-Sesotho
and English-Setswana speech. This represents a step forward in
the use of out-of-domain data to improve the automatic recogni-
tion of code-switched speech in under-resourced South African
languages.
Index Terms: Multilingual bottleneck features, acoustic mod-
elling, code-switching.

1. Introduction
With recent rapid advances in the field of artificial intelligence,
the ease with which humans can interact with machines has be-
come a yardstick with which the sophistication of a system is
assessed [1]. This has had a particularly strong effect in stim-
ulating research interest in ASR. However almost all current
speech interfaces assume monolingual input, while most of the
world’s population is conversant in more than one language.
Hence, there had recently also been a surge in interest in the
automatic recognition of code-switched speech.

The population of South Africa is highly multilingual and
this has recently motivated the development of code-switching
ASR systems for African languages [2, 3]. In South Africa,
most code-switching occurs between English and one or more
South African languages. However, annotated speech corpora
that include such mixed-language speech are extremely scarce
and those that are available are small. Several approaches have
been proposed to address the limitations posed by this lack of
annotated speech data. One major drive considers the incorpo-
ration of speech in other better-resourced languages to leverage
improved ASR performance in the target languages. In [4], the
authors show that the overall performance of a multilayer per-
ceptron acoustic model increases substantially when the system

is initialized using bottleneck features (BNFs). This acoustic
modelling strategy was coupled with a new language modelling
strategy called “open target language” which trains more flex-
ible models for language adaptation and with which improve-
ments in performance were reported for under-resourced lan-
guages. In [5], improvements in the region of 45% over base-
line features were reported when incorporating BNFs for ASR
on DARPA RATS data. Two deep bottleneck neural networks
were trained on English and Mandarin and the resulting features
fused in [6], yielding improvements of between 2% and 7%
in equal error rate for longer and shorter segments respectively
on the NIST language recognition evaluation 2009 (LRE09)
dataset. The authors of [7] analysed the practical aspects of
training bottleneck networks as well as their integration in ASR.
They also compared monolingual and multilingual training for
ASR by evaluating different systems on the LRE09 dataset.

A BNF extractor that was specifically designed for subword
modelling and was trained on the GlobalPhone database was
proposed in [8]. From 16 of the languages in the Globalphone
corpus, 10 high resource languages were used for training the
extractor and the remaining 6 for ASR performance evaluation.
It was shown that an ASR system trained on a single language
using this BNF extractor outperformed a baseline whose fea-
tures were computed using a correspondence autoencoder and
vocal tract length normalization. It was also found that using
two or more languages in the BNF extractor training pool re-
sulted in better performance than using a training data set of the
same size from only one language.

In previous work we have explored the effectiveness of us-
ing out-of-domain monolingual South African speech to im-
prove the performance of code-switched ASR [9]. We found
that better-resourced monolingual speech helped to enhance
code-switched ASR performance, but only by a small margin
considering the amount of out-of-domain data and the compu-
tational resources that were required to incorporate the addi-
tional data during acoustic model training. Much more out-of-
domain data than in-domain data was required to improve code-
switched speech recognition accuracy, and thus the most effec-
tive way of improving performance has remained the extension
of the in-domain training set.

However, given the severe scarcity of resources in the target
languages, we have also actively explored other ways to exploit
available sources of out-of-domain data. This study represents
our first use of BNF extractors to leverage out-of-domain data
to improve the accuracy of code-switched speech in five South
African languages. Although BNF extractors are generally well
established in ASR and other speech processing tasks, to the
best of our knowledge, this is the first attempt to train BNF ex-
tractors using South African Bantu languages.

We investigate the benefit of training a BNF feature extrac-



tion network on related but out out-of-domain data and then us-
ing the extracted BNF features in combination with baseline
features (MFCC, pitch and i-vectors) to train acoustic models
for South African code-switch ASR. To achieve this, a multi-
lingual BNF (mBNF) extractor is developed using nine South
African Bantu languages from the freely-available multilingual
NCHLT corpora [10]. Two mBNF extractors with different bot-
tleneck dimensions are trained and used to extract BNFs from
the target code-switched speech. We observe that the incorpo-
ration of the mBNFs improves the code-switched speech recog-
nition accuracy relative to the system trained using the baseline
features.

2. Data
This section introduces two data sets: a set of monolingual cor-
pora in South Africa’s 11 official languages that was used to
train our mBNF extractor and a corpus of code-switched (CS)
South African speech that was used to train acoustic models for
ASR purposes.

2.1. Monolingual Speech Data

The NCHLT speech corpora contain monolingual wide-band
prompted speech in each of the eleven official languages of
South Africa [10]. A greedy algorithm was used to select the
prompts from a body of text during the compilation of each cor-
pus [11]. Trigram or five-gram prompts were derived from the
text data, depending on the orthographic conventions of each
language. This approach resulted in prompts that vary in length
from single word utterances to short phrases of up to 10 words.
The South African English and Afrikaans corpora were not in-
cluded in our current investigation, only data from the nine re-
maining languages that all belong to the Bantu language family
were used.

Table 1: Statistics of the training sets of the NCHLT Bantu
speech corpora.

Language Speakers Duration Word Word
(hours) types tokens

IsiNdebele (nbl) 132 47.3 14 679 132 529
Sepedi (nso) 194 50.6 11 056 266 859
Sesotho (sot) 194 50.7 10 424 250 125
SiSwati (ssw) 181 48.4 11 925 115 611
Setswana (tsn) 194 50.6 5 495 254 274
Xitsonga (tso) 182 49.6 5 934 208 684
Tshivenda (ven) 192 49.3 7 579 218 820
IsiXhosa (xho) 193 49.1 27 856 122 236
IsiZulu (zul) 194 48.3 23 912 116 319

Total 1 656 443.9 118 860 1 685 457

We used the predefined NCHLT training sets1 summarised
in Table 1 to train the feature extraction network introduced
in Section 3. The NCHLT development and test sets were not
used.

2.2. Code-switched Speech Data

For building code-switched (CS) ASR systems, a dataset of
multilingual speech was compiled from South African soap
opera episodes [12]. The data contains examples of code-
switching between four language pairs: English-isiZulu (EZ),

1The definitions of the predefined NCHLT training, development
and test sets are available at https://sites.google.com/
site/nchltspeechcorpus/

English-isiXhosa (EX), English-Setswana (ET) and English-
Sesotho (ES). IsiZulu and isiXhosa belong to the Nguni lan-
guage family whereas Setswana and Sesotho belong to the
Sotho-Tswana family. Both these belong to the larger Southern
Bantu language family. The available training data consists of
three subsets: (1) manually segmented and transcribed data; (2)
manually segmented but automatically transcribed data; and (3)
automatically segmented and transcribed data. The subsets are
described in more detail below. When combined, the the three
subsets contain 78.1 hours of speech. The development and test
sets were taken from the manually segmented and transcribed
data.

2.2.1. Manually segmented and transcribed data

In most of our experiments concerning code-switched speech,
we have used a 23-hour set of of annotated speech. This set was
partitioned into a training set of 21.1 hours and development and
test sets of 48.3 and 78 minutes respectively. The training set
includes a language balanced subset as well as additional data
that, although skewing the data towards English, was found to
enhance ASR performance [13]. Table 2 gives an overview of
the manually transcribed component of the training data used in
this study.

Table 2: Duration in minutes (m) and hours (h) as well as word
type and token counts for the unbalanced manually segmented
and transcribed training set.

Language Mono
(m)

CS
(m)

Total
(h)

Total
(%)

Word
tokens

Word
types

English 755.0 121.8 14.6 69.3 194 426 7 908
isiZulu 92.8 57.4 2.5 11.9 24 412 6 789
isiXhosa 65.1 23.8 1.5 7.0 13 825 5 630
Setswana 36.9 34.5 1.2 5.6 21 409 1 525
Sesotho 44.7 34.0 1.3 6.2 22 226 2 321

Total 994.5 271.5 21.1 100.0 276 290 24 170

A similar overview of the development and test sets is given
in Table 3. It is noteworthy that the test sets present a strict
evaluation as these utterances are never monolingual but always
contain code-switching.

Table 3: Duration in minutes of English, isiZulu, isiXhosa,
Sesotho and Setswana monolingual (mdur) and code-switched
(cdur) segments in the development and test sets.

English-isiZulu
emdur zmdur ecdur zcdur Total

Dev 0.0 0.0 4.0 4.0 8.0
Test 0.0 0.0 12.8 17.9 30.4

English-isiXhosa
emdur xmdur ecdur xcdur Total

Dev 2.9 6.5 2.2 2.1 13.7
Test 0.0 0.0 5.6 8.8 14.3

English-Setswana
emdur tmdur ecdur tcdur Total

Dev 0.8 4.3 4.5 4.3 13.8
Test 0.0 0.0 8.9 9.0 17.8

English-Sesotho
emdur smdur ecdur scdur Total

Dev 1.1 5.1 3.0 3.6 12.8
Test 0.0 0.0 7.8 7.7 15.5

https://sites.google.com/site/nchltspeechcorpus/
https://sites.google.com/site/nchltspeechcorpus/


2.2.2. Manually segmented and automatically transcribed data

During the compilation of the corpus described in the previous
section, some data was manually segmented but not transcribed.
In a previous investigation, these segments were transcribed us-
ing a semi-supervised procedure, resulting in an additional 11
hours of training data [13].

2.2.3. Automatically segmented and transcribed data

The semi-supervised approach applied in the previous section
was subsequently extended to include a CNN-GMM-HMM
based VAD system (without speaker diarization). This system
was used to segment the raw audio of additional soap opera
episodes and the resulting segments were transcribed in a semi-
supervised manner [14]. Using this procedure a further 45.6
hours of training data was generated. Table 4 provides a sum-
mary of the language tags assigned to the data by the semi-
supervised procedures.

Table 4: Number of segments assigned to each language by the
semi-supervised transcription systems.

Language Eng Zul Xho Sot Tsn CS

Man Seg 2 780 3 113 657 3 370 32 13 338
Auto Seg 4 754 2 122 236 719 2 196 17 911

3. Multilingual Bottleneck Feature
Extraction

Multilingual bottleneck features (mBNF) have been shown to
outperform traditional spectral features as well as monolingual
bottleneck features in a variety of speech processing tasks [7, 8,
15]. Table 5 provides an overview of two mBNF extractors that
were evaluated in this study. Details on each configuration are
provided in subsequent sections.

Table 5: BNF extractor configurations.

Extractor Training data BNF dimension

mBNF1 NCHLT 39
mBNF2 NCHLT 80

To the best of our knowledge, this is the first attempt to de-
velop a mBNF extractor trained on Bantu languages. Our pri-
mary objective is to use the mBNF features to enhance the per-
formance of code-switched ASR. The extractor was developed
using the monolingual NCHLT data introduced in Section 2.1
according to the Babel multilang recipe in the Kaldi ASR toolkit
[16]. Due to time and computational constraints, fine-tuning of
the hyperparameters could not be performed.

As a starting point, a context-dependent Gaussian mixture
model-hidden Markov model (GMM-HMM) system is trained
for each language to obtain the alignments required for training
the feature extraction network. The features used in this step
comprise 39-dimensional MFCCs (including ∆ and ∆∆) cal-
culated over a 25ms window size with 10ms overlap between
windows. Three-dimensional pitch features were also included
since the Bantu languages are tonal.

A block diagram of the time-delay neural network (TDNN)
architecture we used to train the feature extractors is shown in
Figure 1. The network is based on the well-established block
softmax approach described in [15] and [7]. It consists of six

Figure 1: Multilingual bottleneck feature extractor trained on
nine South African Bantu languages with block softmax.

1024-dimensional hidden layers followed by a 39-dimensional
(mBNF1) and 80-dimensional (mBNF2) linear bottleneck layer
and terminates in a block softmax output layer. The hidden lay-
ers are shared across languages while the block softmax output
layer separates the phone state posterior training targets per lan-
guage. The number of output phone state units varies for each
block with a minimum of 4520 for Sesotho and a maximum of
4920 for isiZulu. The input features comprise high resolution
40-dimensional MFCCs (no derivatives), 3-dimensional pitch
features and 100-dimensional i-vectors for speaker adaptation.
The bottleneck layer is used for mBNF extraction.

4. ASR for code-switched Speech
4.1. Acoustic Model

All acoustic models were trained using the Kaldi ASR toolkit
[16] and the training data described in Section 2.2. Three-fold
data augmentation was applied prior to feature extraction [17].
The feature set included standard 40-dimensional MFCCs
(no derivatives), 3-dimensional pitch and 100-dimensional i-
vectors. For the mBNF experiments, combination features were
created by appending the mBNFs to these features.

The models were trained with lattice-free maximum mu-
tual information objective [18] using the standard Kaldi CNN-
TDNN-F [19] Librispeech recipe (6 CNN layers and 10 time-
delay layers followed by a rank reduction layer) and the default
hyperparameters. All acoustic models have a single shared soft-
max layer for all languages as, in general, there is more than one
target language in a segment.

No phone merging was performed between languages and
the acoustic models were all language dependent. For the
bilingual experiments, the multilingual acoustic models were
adapted to each of the four target language pairs.

4.2. Language Model

The EZ, EX, ES, ET vocabularies respectively contain 11 292,
8 805, 4 233, 4 957 word types and were closed with respect to
the train, development and test sets. The SRILM toolkit was
used to train and evaluate all trigram language models [20].
The EZ, EX, ES and ET development set perplexities are 425.8,
352.9, 151.5, and 213.3 respectively. The corresponding values



Table 6: Word error rate performance of the four bilingual code-switch ASR systems with and without mBNF features.

System Feature Avg EZ EX ES ET

extractor Dev Test Dev Test Dev Test Dev Test Dev Test

A Baseline MFCC [14] 39.5 42.1 33.3 38.9 34.7 42.3 49.1 47.9 40.8 39.3
B mBNF1 38.9 41.5 32.5 38.8 34.1 41.5 49.3 46.5 39.8 39.0
C mBNF2 39.4 41.0 34.0 38.0 34.0 41.1 48.8 46.7 40.8 38.1

Table 7: Language specific WER (%) (lowest is best) for English (E), isiZulu (Z), isiXhosa (X), Sesotho (S), Setswana (T) and code-
switched (CS) bigram correct (BiCS) (%) (highest is best) for the test set.

System English-isiZulu English-isiXhosa English-Sesotho English-Setswana

E Z BiCS E X BiCS E S BiCS E T BiCS

A (baseline) 32.4 43.9 38.6 35.1 47.9 32.4 34.7 57.0 34.0 27.4 45.4 42.5
B 32.2 43.5 38.7 34.9 45.3 34.2 34.8 54.2 34.9 26.9 45.5 42.8
C 31.7 43.0 39.2 34.6 44.3 34.5 35.0 53.9 34.9 26.7 44.9 43.1

for the test set are 601.7, 788.8, 180.5, 224.5.2

5. Results and Discussion
ASR performance was evaluated by measuring word error rate
(WER) on the EZ, EX, ES and ET development and test sets
described in Table 3. In Tables 6 and 7, System A is the base-
line MFCC-based system without BNF features, while Systems
B and C use features produced by mBNF1 and mBNF2, respec-
tively.

5.1. BNF Extractor Performance

As can be observed in Table 6, for almost all the cases in the
four bilingual data sets, the ASR performance of Systems B and
C improve over the baseline when the mBNFs are included in
the feature set. Hence, it can be concluded that including mB-
NFs in the acoustic model training improves ASR performance
for code-switched speech. Furthermore, using 80-dimensional
BNFs (System C) offers improved test set performance over us-
ing 39-dimensional mBNFs (System B) for three of the four
language pairs as well as on average. However, training acous-
tic models with the higher dimensional mBNF features requires
more computational resources.

5.2. Language Specific WER Analysis

For code-switched ASR, the recognition performance at code-
switch points is of particular interest. Language specific WERs
and code-switched bigram correct (BiCS) values for the different
systems are presented in Table 7. Code-switch bigram correct
is defined as the percentage of words correctly recognised im-
mediately after a language switch. All values are percentages.

It is interesting to note that mBNFs contributed significantly
to reduce the Bantu WER, especially for isiXhosa and Sesotho.
Modest reductions in WER were also obtained for English in
most of the language pairs. This may be because the extractor
was only trained on Bantu languages. However, ultimately the
aim would be to have a feature extractor that has generalised
well over all data and could be used to extract features for any
language equally accurately. Further, the accuracy at the code-
switch points is also substantially higher for Systems B and C
compared to the baseline (System A). Hence, adding mBNF
features enhanced system performance at code-switch points.

2A more detailed description of the development of our code-
switched language models is provided in [13].

Although current improvements are modest, we would like
to point out that initial experiments on our code-switching data
that used a BNF extractor trained on a proprietary data set con-
taining other languages yielded similar improvements.

6. Conclusions
We studied the potential benefit of using bottleneck features for
acoustic modelling of under-resourced code-switched speech in
four South African language pairs. A new bottleneck feature ex-
tractor was developed using the Bantu languages in the freely-
available NCHLT Speech corpus. Two bottleneck feature ex-
tractors producing mBNFs with different dimensionalities were
included in the investigation. Recognition results have shown
that including the mBNFs in the acoustic modelling not only
improved the overall ASR performance for mixed-language
speech, but also contributed to improving performance specifi-
cally at code-switch points. Future work will include the addi-
tion of English and other languages to the pool of languages for
mBNF extractor training, optimization of network hyperparam-
eters and investigating the trade-off between performance and
the bottleneck dimension.

The source code for training the multilingual
bottleneck feature extractor is available at https:
//github.com/ewaldvdw/kaldi/tree/mbnf_
cs2020/egs/nchlt_multi_bnfs/s5.
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