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Abstract

The need to compile annotated speech databases remains an impediment to the
development of automatic speech recognition (ASR) systems in under-resourced
multilingual environments. We investigate whether it is possible to combine speech
data from different languages spoken within the same multilingual population to
improve the overall performance of a speech recognition system. For our investiga-
tion we use recently collected Afrikaans, South African English, Xhosa and Zulu
speech databases. Each consists of between 6 and 7 hours of speech that has been
annotated at the phonetic and the orthographic level using a common IPA-based
phone set. We compare the performance of separate language-specific systems with
that of multilingual systems based on straightforward pooling of training data as
well as on a data-driven alternative. For the latter, we extend the decision-tree
clustering process normally used to construct tied-state hidden Markov models to
allow the inclusion of language-specific questions, and compare the performance of
systems that allow sharing between languages with those that do not. We find that
multilingual acoustic models obtained in this way show a small but consistent im-
provement over separate-language systems as well as systems based on IPA-based
data pooling.
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1 Introduction

The first step in the development of a speech recognition system for a new
language is normally the recording and annotation of a large quantity of spo-
ken audio data. In general, the more data is available, the better the perfor-
mance of the system. However, data gathering and especially annotation is
very expensive in terms of money and time. In a multilingual environment,
this problem is compounded by the need to obtain such material in several
languages. It is in this light that we would like to determine whether data
from different languages that coexist in a multilingual environment can be
combined in order to improve speech recognition performance. This process
involves determining phonetic similarities between the languages, and exploit-
ing these to obtain more robust and effective acoustic models. The eventual
aim of this work is the development of speech recognition systems that are
able to deal with multiple languages without the need to explicitly implement
a set of parallel language-specific systems.

Multilingual speech recognition is particularly relevant in South Africa, which
has 11 official languages and among whose population monolinguality is almost
entirely absent. This leads to a large geographic overlap in mother tongue
speakers of different languages, as well as habitual and frequent code-mixing
and code-switching. We study the four languages Afrikaans, English, Xhosa
and Zulu, for which a certain amount of phonetically and orthographically
annotated speech data is available. Detailed statistics reflecting the degree
of multilinguality in South Africa are unfortunately not available. However,
Table 1 shows the percentage of the population found to use each of the four
languages under study as a mother tongue, and also as a second language.
It has furthermore been estimated that Xhosa and Zulu speakers on average
each speak four languages, while Afrikaans and English speakers are usually
bilingual (Webb, 2002).

Language First language speakers Second language speakers

Afrikaans 13.3% 16.5%

English 8.2% 18.5%

Xhosa 17.6% 18.0%

Zulu 23.8% 24.2%

Table 1
Percentage of the population who use Afrikaans, English, Xhosa and Zulu as first

and second languages respectively (Statistics South Africa, 2004).

Multilingual speech recognition has received attention by several authors over
the last decade. The seminal work by Schultz and Waibel dealt with 10 lan-
guages, each of which is spoken in a different country and forms part of the
GlobalPhone speech corpus (Schultz and Waibel, 1998, 2000, 2001). Multi-
lingual recognition systems were developed by applying decision-tree cluster-
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ing to tied mixture HMMs. While these techniques proved to be an effective
means of constructing recognition systems for an unseen language not part of
the training set, the authors were unable to improve on the performance of
separate monolingual recognition systems. Similar conclusions were reached
by Kohler (Köhler, 2001), who considered agglomerative clustering of mono-
phone models in 6 languages, and by Uebler (Uebler, 2001), who employed
IPA-based clustering in 2 and 3 languages. Finally, work by Uebler, Schüßler
and Niemann (Uebler et al., 1998), which has focussed on a bilingual speech
recognition system, has shown some improvement in recognition accuracy for
non mother tongue speech, but also not for first language speakers.

We have considered the application of decision-tree clustering to the devel-
opment of tied-state multilingual triphone HMMs. Furthermore, we focus on
languages spoken within the same country, and hence related at least to some
degree by the extensive phonetic and lexical borrowing, sharing, and mixing
that takes place in a multilingual society. Finally, strong links exist between
certain groups of indigenous languages (such as the Nguni language group
which includes Xhosa and Zulu), that may allow more fruitful exploitation of
data sharing by speech recognition applications.

2 Speech databases

We have based our experiments on the African Speech Technology (AST)
databases, which consist of recorded and annotated speech collected over both
mobile and fixed telephone networks (Roux et al., 2004). For their compila-
tion, speakers were recruited from targeted language groups and given unique
datasheets with items designed to elicit a phonetically-diverse mix of read and
spontaneous speech. The datasheets included read items such as isolated dig-
its, as well as digit strings, money amounts, dates, times, spellings and also
phonetically-rich words and sentences. Spontaneous items included references
to gender, age, mother tongue, place of residence and level of education.

The AST databases were collected in five different languages, as well as in a
number of non-mother tongue variations. In this work we have made use of
the Afrikaans, English, Xhosa and Zulu mother tongue databases.

Afrikaans is a Germanic language with its origins in 17th-century Dutch
brought to South Africa by settlers from Holland. It incorporates lexical and
syntactic borrowings from Malay, Bantu and Khoisan languages, as well as
from Portuguese and other European languages. English was brought to South
Africa by British occupying forces at the end of the 18th century, and is today
regarded as a specific variety of so-called World Englishes. Xhosa and Zulu
both belong to the Nguni group of languages, which also includes Ndebele
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and Swazi. The orthography of both languages, as it is commonly accepted
today, was standardised as recently as the 1960’s. Both are tone languages,
and exhibit a range of ’exotic’ sounds, such as implosive bilabial stops as well
as a range of clicks and associated phonetic accompaniments.

A global set of 135 phones, based on the International Phonetic Alphabet,
has been used during phonetic speech transcription of the speech databases
(International Phonetic Association, 2001). These phone units were chosen to
reflect the variety of distinct sounds that were observed during transcription
in each of the four languages. The phone set includes labels for diphthongs
and tripthongs that occur across word boundaries in spontaneous speech. Fur-
thermore, in several cases diacritic symbols, in combination with consonants
or vowels, have been considered to be unique phones. These diacritics include
ejection, aspiration, syllabification, voicing, devoicing and duration. A more
detailed description of the phone set and how it differs among the four lan-
guages has been presented in (Niesler et al., 2005).

Together with the recorded speech waveforms, both orthographic (word-level)
and phonetic (phone-level) transcriptions were available for each utterance.
The orthographic transcriptions were produced and validated by human tran-
scribers. Initial phonetic transcriptions were obtained from the orthography
using grapheme-to-phoneme rules (Louw et al., 2001; Wissing et al., 2004;
Louw, 2005), except for English where a pronunciation dictionary was used
instead. These were subsequently corrected and validated manually by human
experts.

2.1 Training and test sets

Each database was divided into a training and a test set. The four training
sets each contain between six and seven hours of audio data, as indicated in
Table 2. Phone types refer to the number of different phones that occur in the
data, while phone tokens indicate their total number.

Database Speech No. of No. of Phone Phone Word
name (hours) utterances speakers types tokens tokens

Afrikaans 6.18 9 520 234 84 180 904 47 383

English 6.02 9 904 271 73 167 986 47 941

Xhosa 6.98 8 538 219 107 177 843 36 676

Zulu 7.03 8 295 203 101 187 249 35 568

Table 2
Training sets for each database.

Table 3 shows the extent to which the phone set, which corresponds to the set
of unique phone types in the training set, of each language covers the phone
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types and tokens found in the other language’s training set. For example,
75.6% of phone types and 98.4% of phone tokens in the Afrikaans training set
are also present among the English phone types. From the table we see that
especially Xhosa and Zulu have many phones in common. This is also true for
Afrikaans and English, but to a lesser degree.

Phone types Covers % of training set phone types/tokens in:

of language Afrikaans English Xhosa Zulu

Afrikaans 100/100 87.3/99.5 61.9/87.5 60.6/88.1

English 75.6/98.4 100/100 55.2/86.6 51.5/86.5

Xhosa 79.3/97.4 81.7/92.3 100/100 90.9/99.9

Zulu 73.2/92.6 71.8/85.7 85.7/99.8 100/100

Table 3
Degree to which the monophone types of each language cover the training set

monophone types and tokens of every other language.

Since our acoustic models will be context dependent, it is useful also to con-
sider the similarity between the triphones of each language. Accordingly, Table
4 shows the extent to which the training set triphone types of each language
cover the training set triphone tokens of the other languages. Once again, there
is a great deal of commonality between Xhosa and Zulu. English triphones
show the greatest overlap with Afrikaans, but this is not true for Afrikaans,
which exhibits a slightly better coverage of both Xhosa and Zulu triphones.

Triphone types Covers % of training set triphone tokens in:

of language Afrikaans English Xhosa Zulu

Afrikaans 100 25.6 34.5 32.9

English 29.3 100 18.1 13.1

Xhosa 31.9 26.6 100 88.3

Zulu 34.8 22.9 87.3 100

Table 4
Degree to which the triphone types of each language cover the training set triphone
tokens of every other language.

The test set for each language contains approximately 25 minutes of speech
data, as shown in Table 5. There was no speaker-overlap between the test and
training sets, and each contained both male and female speakers.

Database Speech No. of No. of Phone Word
name (minutes) utterances speakers tokens tokens

Afrikaans 24.4 750 20 11 441 3 051

English 24.0 702 18 10 338 3 652

Xhosa 26.8 609 17 10 925 2 480

Zulu 27.1 583 16 11 008 2 385

Table 5
Test sets for each database.
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Finally, a separate development set, consisting of approximately 15 minutes
of speech from 10 speakers in each language was also prepared. This data was
used only in the optimisation of recognition parameters, before final evaluation
on the test-set. There is no overlap between the development set and either
the test or training sets.

3 General experimental method

The HTK tools were used to develop and test recognition systems (Young
et al., 2002). The speech audio data was parameterised as 39-dimensional fea-
ture vectors consisting of 13 Mel-frequency cepstral coefficients (MFCCs) and
their first and second differentials, with cepstral mean normalisation (CMN)
applied on a per-utterance basis. From this parameterised training set and its
phonetic transcription, diagonal-covariance cross-word triphone models with
three states per model and eight Gaussian mixtures per state were trained
by embedded Baum-Welch re-estimation and decision-tree state clustering
(Young et al., 1994).

The decision-tree state clustering process begins by pooling all context-dependent
phones found in the training corpus that correspond to the same context-
independent phone, termed the basephone hereafter. A set of linguistically-
motivated questions is defined with which these clusters can be split. Such
questions may, for example, ask whether the left context of a particular context-
dependent phone is a vowel, or whether the right context is a silence. The
clusters are subdivided repeatedly, at each iteration applying the question
that affords the largest improvement in training set likelihood. The process
ends either when this likelihood gain falls below a certain threshold, or when
the number of occurrences remaining in a cluster becomes too small. Hence
the clustering process results in a binary decision tree for each state of each
basephone. The leaves of this tree are clusters of context-dependent phones
whose training data must subsequently be pooled.

A great advantage of this clustering method is that context-dependent phones
not encountered in the training data at all can easily be synthesised by means
of the decision trees that have been determined for the corresponding base-
phone. This is important when using cross-word context dependent models,
or when the phone set is large or the training set small and hence sparse.

The related research by Schultz and Waibel has applied decision-tree cluster-
ing to multilingual acoustic modelling using tied-mixture systems (Schultz and
Waibel, 2001). In these systems the HMMs share a single large set of Gaussian
distributions, with state-specific mixture weights. This configuration allows
the clustering process to employ an entropy-based distance measure based
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on the mixture weights to determine the similarity between states. Our con-
figuration may in contrast be described as a tied-state system. Each set of
clustered states shares a much smaller Gaussian mixture distribution, but the
distribution is completely separate for each set of clustered states. Since the
entropy-based distance measure cannot be used for this configuration, our clus-
tering procedure is based on the reduction in training set likelihood associated
with a cluster subdivision.

Since the vocabularies of the AST databases vary widely between languages,
comparison of recognition performance will be based on phoneme error rates,
as is also proposed in (Schultz and Waibel, 1998; Waibel et al., 2000). All
speech recognition experiments are performed using a backoff bigram language
model obtained for each language from the training set phoneme transcriptions
(Katz, 1987). Absolute discounting was used for the estimation of language
model probabilities (Ney et al., 1994).

Database Bigram types Perplexity

Afrikaans 1420 11.84

English 1900 14.08

Xhosa 2003 12.72

Zulu 1886 12.57

Table 6
Bigram language model perplexities measured on corresponding test-sets.

Language model perplexities are shown in Table 6. Word-insertion penalties
and language model scale factors used during recognition were optimised on
the development set. Note that, as indicated in Table 2, the phone sets of each
language differ considerably. Of the 135 different phone labels present in the
annotations, only 55 are common to all four languages.

4 Language-specific acoustic models

To serve as a baseline, a fully language-specific system was developed, that
allows no sharing between languages. Model development begins by pooling all
triphones with the same basephone separately for each language. The decision
tree clustering process then employs only questions relating to the phonetic
character of the left and the right context. The structure of the resulting
acoustic models is illustrated in Figure 1 for two languages (Xhosa and Zulu)
and a single triphone.

Since no overlap is allowed between the triphones of different languages, this
baseline corresponds to a completely separate set of acoustic models for each
language.
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Fig. 1. Language-specific acoustic models.

5 Language-independent acoustic models

In addition to the four language specific acoustic model sets, a single language-
independent acoustic model set was trained by pooling the data across all four
languages for phones with the same IPA classification. This will no longer allow
the models to differentiate between subtly different spectral qualities of the
same IPA phone used in different languages. It also no longer allows language-
specific co-articulation effects to be taken into account during the decision-tree
triphone clustering step of model development. Hence the performance of these
models is expected to be a lower bound for the performance of multilingual
state clustering that will be introduced in the next section.

Figure 2 illustrates the structure of the language-independent models, again
for just two languages and a single triphone. Both languages share the same
Gaussian mixture probability distributions, as well as HMM transition prob-
abilities.

6 Multilingual acoustic models

The development of our multilingual model set is similar to that of the language-
independent model set. The state tying process begins by pooling all triphones
of all four languages corresponding to the same basephone. However in this
case the set of decision-tree questions take into account not only the phonetic
character of the left or right context, but also the language of the basephone.
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Fig. 2. Language-independent acoustic models.

Two phonemes with the same IPA symbol but from different languages can
therefore be kept separate if there is a significant acoustic difference, or can
be merged if there is not. For example, a pool of triphones with basephone [a]
can be split by a question asking whether the triphone is a Zulu triphone or
not. This allows tying across languages when the triphone states are acousti-
cally similar, and separate modelling of the same triphone state for different
languages when there are differences.

Zulu HMM for triphone [b]−[a]+[d]
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Fig. 3. Multilingual acoustic models.

The structure of such multilingual acoustic model set is shown in Figure 3.
Here the centre state of the triphone [b]-[a]+[d] is tied, but the first and
last states are modelled separately for each language. In our experiments, the
transition probabilities of all triphones with the same basephone were tied,
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regardless of language.

7 Experimental results

We have applied the acoustic modelling approaches described in Sections 4, 5
and 6 to the combination of the Afrikaans, English, Xhosa and Zulu training
data described in Section 2. Since the optimal number of parameters for the
acoustic models was not known, several sets of HMMs were produced by vary-
ing the likelihood-improvement threshold used during decision-tree clustering,
as described in Section 3. Decision-tree clustering was carried out using HMM
sets with single-mixture Gaussian densities per state. Clustering was followed
by four iterations of embedded Baum-Welch re-estimation. The number of
mixtures per state was then gradually increased to eight, each such increase
being followed by a further four iterations of embedded training. The perfor-
mance, in terms of average phone accuracy, of the final 8-mixture HMM set
measured on the evaluation test set is shown in Figure 4. A single curve indi-
cating the average accuracy over all four test-sets is shown, and the number of
states in the language-specific systems was taken to be the sum of the number
of states in each component language-specific HMM set. The number of states
in the multilingual system is the total number of unique states remaining after
decision-tree clustering, and hence takes cross-language sharing into account.

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 62.5

 63

 0  5000  10000  15000  20000

P
ho

ne
 r

ec
og

ni
tio

n 
ac

cu
ra

cy
 (

%
)

Number of clustered states

Multilingual HMMs

Language-dependent HMMs

Language-independent HMMs
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gual and language-independent systems as a function of the total number of distinct
HMM states.

Figure 4 indicates that, for most systems, pooling the data between languages
for phones with the same IPA symbol leads to a deterioration in performance.
This agrees with the findings of other studies. However, in contrast to previ-
ous findings, the results also indicate that the multilingual systems achieved
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modest average performance improvements relative to both the language-
dependent and the language-independent systems over all the models in the
range considered. This suggests that beneficial cross-lingual sharing is in fact
taking place. The improvement achieved by the best multilingual system rela-
tive to the best language-dependent system shown in Figure 4 is approximately
0.1% absolute, and has been determined to be statistically significant only at
the 80% level using bootstrap confidence interval estimation (Bisani and Ney,
2004). Nevertheless, the improvements are consistently achieved over different
model sizes.

Closer inspection of the results shows that the average improvement is usu-
ally accompanied by per-language gains. Figure 5 shows the respective recog-
nition performance of the multilingual and the language-dependent systems
measured separately on the evaluation test set of each language. The differ-
ing phone recognition accuracies are a result of the differing phone sets used
by each language, as well as of the different language model perplexities. In
particular, Afrikaans, which has the highest phone accuracies, has the lowest
language model perplexity. In contrast, Xhosa and Zulu, which have the lowest
accuracies, have the largest phone sets. Finally, English displays the second
highest phone accuracies, and has the smallest phone set, but has the highest
language model perplexity of all.

Figure 5 indicates that in the majority of cases the multilingual system de-
livers improved performance relative to a corresponding language-dependent
system. However, since the clustering process optimises the overall likelihood,
improvements for each individual language are not guaranteed. Indeed, Figure
5 demonstrated that unchanged or slightly deteriorated per-language perfor-
mance does sometimes occur, despite an improvement in the associated overall
average.

Inspection of the type of questions most frequently used during clustering
reveals that language-based questions are most common at the root of the
decision tree, and become increasingly less frequent towards the leaves. Figure
6 analyses the decision tree of the largest multilingual system (with almost
20 000 states), and shows that approximately 45% of all questions at the root
nodes are language-based, and that this proportion drops to 22% and 15% for
the roots’ children and grandchildren respectively.

This behavior is reflected also when considering the contribution to the re-
duction in log likelihood made by the language-based and phonetically-based
questions respectively during the decision tree growing process. In Figure 7
this contribution is shown, again as a function of the depth within the decision
tree. It is evident that, at the root node, the greatest log likelihood reduction
is afforded by the language-based questions (approximately 74% of the to-
tal reduction), while the phonetically-based questions make up the greatest
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contribution thereafter. This indicates that the decision tree often quickly par-
titions the models into language-based groups, after which further refinements
to the tree are based more on phonetic distinctions.

In order to determine to what extent and for which languages data sharing ul-
timately takes place for the various multilingual systems, we have determined
the proportions of decision tree leaf nodes (which correspond to the state clus-
ters) that are populated by states of exactly one, two, three or four languages
respectively. A cluster populated by states of a single language corresponds to
a unilingual cluster, and indicates that no sharing with other languages has
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taken place. A cluster populated by states of all four languages, on the other
hand, indicates that sharing across all four languages has taken place. Figure
8 illustrates how these proportions change as a function of the total number
of clustered states in the system.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5000  10000  15000  20000

P
er

ce
nt

ag
e 

of
 c

lu
st

er
ed

 s
ta

te
s

Number of clustered states in multilingual HMM set

1 language
2 languages

3 languages
4 languages

Fig. 8. Proportion of state clusters combining data from one (unilingual), two (bilin-
gual), three (trilingual) and four (quadralingual) languages.

From Figure 8 it is apparent that, as the number of clustered states is in-
creased, the proportion of clusters consisting of a single language also in-
creases. This indicates that the progressive specialisation of the decision tree
is tending to produce separate clusters for each language, as one would find
in a language-dependent system. The proportion of clusters containing two,
three and all four languages shows a commensurate decrease as the number
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of clustered states increases. Nevertheless, for an acoustic model with 10 000
states, which according to Figure 4 yields approximately optimal recognition
accuracy, around 20% of the state clusters contain a mixture of languages,
demonstrating that a significant degree of sharing is taking place.
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In order to determine which languages are being shared most often by the
clustering procedure, Figures 9 and 10 analyse the proportion of states that
consist of groups of two and three languages respectively. From Figure 9 we see
that the largest proportion of two-language clusters are due to a combination of
Xhosa and Zulu. This agrees with our earlier observations of the high phonetic
similarity of these languages, even at the triphone level. Afrikaans and English
are the second most frequent language combination, but are much less common
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than the Xhosa and Zulu clusters. Figure 10 shows that, in cases where three
languages are clustered together, the combinations of Afrikaans, Xhosa and
Zulu, and of English, Xhosa and Zulu are similarly frequent. In contrast,
clusters containing Afrikaans, English and one of the Nguni languages are
much less common.

8 Summary and conclusions

We have demonstrated that decision tree state clustering can be employed to
obtain multilingual acoustic models by allowing sharing between basephones
of different languages and introducing decision tree questions that relate to
the language of a particular basephone. This mode of clustering was used
to combine Afrikaans, English, Xhosa and Zulu acoustic models. Improve-
ments over separate-language as well as language-independent systems were
observed. Further analysis showed that language-based decision tree questions
play a dominant role at and near the root node, indicating that language spe-
cialisation occurs quickly during tree construction. However it is also observed
that a significant proportion of state clusters contain more than one language,
from which we conclude that language sharing occurs regularly in the mul-
tilingual acoustic models. Hence this technique promises to be useful for the
development of acoustic models for use within multilingual speech recognition
systems.
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