
NATURAL LANGUAGE UNDERSTANDING IN THE DACST-AST DIALOGUE SYSTEM

T.R. Niesler
�

and J.C. Roux
�

trn@dsp.sun.ac.za jcr@maties.sun.ac.za
�

Department of Electrical Engineering�

Research Unit for Experimental Phonology University of Stellenbosch
Private Bag X1, Matieland, Stellenbosch 7602, South Africa

ABSTRACT

This paper describes the natural language understanding (NLU)
component of the DACST-AST spoken dialogue system. We
adopt a finite-state architecture and develop a syntax that allows
these finite-state networks to be defined in a modular fashion.
Meaning is associated with a particular path through a network
by embedding semantic tags at appropriate points in its defini-
tion. The understanding process consists of a parsing operation
that determines whether a user utterance is contained within a
given finite-state network. The semantic tags associated with the
path resulting from a successful parse represent the information
that has been “understood” from the user utterance.

1. INTRODUCTION

The DACST-AST project is supported by the South African
Department for Arts, Culture, Science and Technology (DACST)
and has among its long-term aims the development of resources
and expertise in the field of human language technology within
the South African context. Human language technology has an
important role to play in moving South Africa’s strongly multi-
lingual and multi-ethnic society into the information age by im-
proving the access and flow of information between individuals
and private or public institutions. With 11 official languages and
an abundance of accents and dialects, the successful develop-
ment and deployment of speech technology presents many chal-
lenges.

Initial activity within the DACST-AST project has focused
on the gathering, transcription and validation of speech resources
for 5 of the 11 languages and on the design and development of
speech and language processing algorithms to allow the realisa-
tion of spoken dialogue systems [4]. This paper describes the
development of the natural language understanding (NLU) com-
ponent, which is a key subsystem of a dialogue system.

2. SPOKEN DIALOGUE SYSTEMS AND NATURAL
LANGUAGE UNDERSTANDING

A dialogue may be described as an interaction between two
parties in which information is communicated between the par-
ties in a number of sequential turns1. When the method of com-
munication is speech, we refer to a spoken dialogue. A machine
designed to maintain a spoken dialogue with a person is a spo-
ken dialogue system. Since no other means of communication
other than speech will be considered here, the term “dialogue
system” will be taken to mean “spoken dialogue system”. Hence
each turn of a spoken dialogue consists either of a system or a
user utterance.

1A turn refers to a single uninterrupted transfer of information from
one party to the other.

The task of natural language understanding within the con-
text of a dialogue system is to extract meaning from a user ut-
terance. On the basis of this meaning, the dialogue system must
decide on how to proceed with the dialogue. A simplified dia-
gram illustrating the architecture of the DACST-AST dialogue
system is shown in figure 1.

bla
bla LanguageRecognition

Speech

RESPONSE

SYSTEM

RETRIEVE
INFORMATION

MEANING OF

UTTERANCE

RECOGNISED

Speech

UTTERANCE

Synthesis Control
Dialog

Database

Understanding

Natural
��

Figure 1: Architecture of the DACST-AST dialog system.

To illustrate the operation of the system in figure 1, con-
sider as a particular example a dialogue system with which the
user can make a reservation at a certain hotel. With reference
to figure 1, a typical dialogue might proceed as follows. First
the user utters a sentence or phrase corresponding to his or her
turn in the dialogue. This utterance is transcribed into text by the
speech recognition component. Let us assume for now that the
user’s utterance is:

“Could I have a single room for tonight please”

and that this has been correctly transcribed by the speech recog-
niser. The recognised text is interpreted by the natural language
understanding component, and its meaning passed on to the dia-
logue controller. For our example, this meaning would be (i) that
a booking has been requested, (ii) that it is for a single room and
(iii) that it is for the same day. The understanding component
must extract these three items of information from the recog-
nised user utterance. Based on this inferred meaning, the dia-
logue controller decides on an appropriate next action. This may
be the retrieval of some requested information from a database,
for example to check whether there are in fact any single rooms
available that evening. Alternatively the system may request
from the user some further information that it requires to per-
form its task, for example it may ask the user whether he or she
would like a room with sea view or one with mountain view.
Once the system has decided on the appropriate next action, it
responds to the user via the speech synthesis module.

Due to the many ways in which a particular message may
be communicated by human language, the user’s input may be
expected to be highly variable. The NLU system must extract
the important information from such natural language input and



present it to the dialogue management subsystem in a predictable
manner. Considering again our example user utterance, the nat-
ural language understanding system might return the extracted
information in the following form.

request = “make reservation”;
room type = “single”;
arrival date = “today”;

This information, whose format is regular and well-defined,
is used by the dialogue management subsystem to decide on the
most appropriate response to the user.

3. FINITE-STATE NATURAL LANGUAGE
UNDERSTANDING

The DACST-AST system makes use of a finite-state nat-
ural language understanding network, as currently successfully
employed by a number of experimental as well as commercially
deployed dialogue systems [1], [2], [3], [5]. In this approach
the set of (partial) sentences that can be processed (i.e. “un-
derstood”) by the system is precisely defined by a graph whose
links (edges) correspond to words or sets of words. The set of
sentences that the system will accept is given by the set of all
the unique paths through the network. For example, consider the
following finite-state network.

SEA
SINGLE ROOM

DOUBLE ROOM

SUITE

WITH VIEWI’D LIKE A

MOUNTAIN

Figure 2: An example of a finite-state network .

This network is a compact representation of a total of nine
different utterances. In practice, the finite-state network would
be much more complex and the number of utterances it covers
much larger. In order to extract information using the finite-
state network, an appropriate interpretation must be explicitly
assigned to the information bearing words. In the DACST-AST
system this is achieved by allowing every link of the finite-state
network to be associated with the assignment of an appropriate
value to a particular variable, as illustrated in figure 3.

view="sea"

room="suite"

room="single"

view="mountain"

SINGLE ROOM

DOUBLE ROOM

SUITE

WITH VIEWI’D LIKE A

MOUNTAIN

SEA

room="double"

Figure 3: The network of figure 2 with variable assignments.

Now any path through the network has associated with it a
number of variable assignments. When a user utterance is pre-
sented to the natural language understanding system, a parsing
algorithm first determines whether there is a path through the
network corresponding to the same sequence of words present
in the utterance. If such a path is found, then the variable assign-
ments associated with the links along this path are made. For
example, had the user uttered the sentence:

“I’d like a double room with sea view”

the parsing algorithm would find that this word sequence is in-
deed present in the finite-state network illustrated in figure 3 and
that the corresponding path through this network has associated
with it the following two variable assignments.

room = “double”;
view = “sea”;

The names and final values of these variables constitute the result
of the natural language understanding process.

4. SPECIFYING FINITE-STATE UNDERSTANDING
NETWORKS

For any particular application, the structure of the finite-
state network described in section 3 must be specified by the
developer so that the network reflects the set of word sequences
and associated variable assignments that must be covered. In
the DACST-AST system, this is achieved by means of a regu-
lar grammar. Hence the structure of the finite-state network is
defined in a plain text file according to a syntax that will be de-
scribed in the remainder of this section.

4.1. Set of alternatives

The delimiters “ � ”, “ � ” and “ � ” are used to indicate a set of
alternative words or phrases. For example, the definition:

I’d like a � single room � double room � suite � please;

defines the network shown in figure 4.

PLEASE

SINGLE ROOM

DOUBLE ROOM

SUITE

I’D LIKE A

Figure 4: Network with set of alternatives.

These delimiters can be nested. Hence the same grammar
could have been defined as:

I’d like a ��� single � double � room � suite � please;

The finite-state network corresponding to this definition is
shown in figure 5.

PLEASEI’D LIKE A

SINGLE

DOUBLE ROOM

SUITE

Figure 5: Network with nested set of alternatives.

4.2. Optional phrases

The delimiters “[” and “]” indicate that the enclosed word or
phrase is optional. For example, the definition:

I’d like a � single room � double room � suite � [please];

indicates that the final word “please” is optional, and defines the
network shown in figure 6.

As before, nesting is possible. Using the regular syntax de-
fined so far, the network in figure 2 may be described by the
following definition.

I’d like a � single room � double room � suite � [with
� sea � mountain � view ];



PLEASE

SINGLE ROOM

DOUBLE ROOM

SUITE

I’D LIKE A

Figure 6: Network with set of alternatives and optional word.

4.3. One or more repetitions

The delimiters “ � ” and “ � ” indicate that the enclosed word
or phrase may be repeated one or more times. For example, the
definition:

� I’d like � a � single room � double room � suite � ;

indicates that the phrase “I’d like” can be repeated, to allow for
false starts for example. The network corresponding to this defi-
nition is shown in figure 7.

I’D LIKE

SINGLE ROOM

DOUBLE ROOM

SUITE

PLEASEA

Figure 7: Network with one or more repetitions.

4.4. Variable assignments

A variable assignment is associated with a link in the under-
standing network by means of the syntax:

linkname : varname = “varvalue”;

Hence the assignments as indicated in figure 3 would be de-
scribed by the following definition.

I’d like a � single room : room = “single” �
double room : room = “double” �
suite : room = “suite” � [with � sea : view = “sea” �
mountain : view = “mountain” � view ];

Here there are two variables named “room” and “view” re-
spectively. In the DACST-AST natural language understanding
definition, all variables must be declared prior to use and hence
the complete network definition is shown below.

variables
�

string : room;
string : view;
�

grammar
�

I’d like a � single room : room = “single” �
double room : room = “double” �
suite : room = “suite” � [with � sea : view = “sea” �
mountain : view = “mountain” � view ];
�

The variables and then the network are declared by the key-
words variables and grammar respectively. In the variables dec-
laration, the two variables “room” and “view” are both defined to
be strings. The grammar declaration then defines the finite-state
network as before.

4.5. Subgrammars

In order to allow modular design and definition of natural
language understanding grammars, the DACST-AST software
allows a grammar to call another by means of an appropriate
call within the grammar declaration section. The grammar initi-
ating such a call is termed the parent grammar, and the grammar
being called the subgrammar. When a grammar has no parent
grammar it is termed the root grammar. A subgrammar is de-
fined separately and is hence a fully independent grammar in its
own right. Information is passed from the subgrammar to its par-
ent grammar by means of return variables. These are defined in
in the return declaration, as illustrated below.

variables
�

string : type;
�

grammar
�
� single room : type = “single” �
double room : type = “double” �
suite : type = “suite” �
�

return
�

type;
�

This grammar is a subsection of that defined at the end of
section 4.4, dealing only with the room type. The return declara-
tion indicates that, on completion of a successful parse with this
grammar, the value of the variable “type” will be passed back
to the parent grammar. Multiple variables can be passed back
by listing their names in the variables declaration separated by
commas. No information is passed from the parent grammar to
the subgrammar. In order for one grammar to employ another
as a subgrammar, the latter must be declared in the subgrammar
declaration section of the former. For example,

variables
�

string : room;
string : view;
�

subgrammar
�

roomtype : getroomtype;
�

grammar
�

I’d like a @getroomtype:room
[with � sea : view = “sea” �
mountain : view = “mountain” � view ];
�
�

type,view;
�



Here the subgrammar “getroomtype” has been declared to
be of type “roomtype”, which is assumed to be the name as-
signed to the grammar definition considered at the start of this
section2. In the grammar declaration, a call is made to “getroom-
type” and its return variable (which we remember to be the value
of the variable “type”) is passed into the local variable “room”.
Finally, on exit, this grammar returns the values of the variables
“type” and “view”.

5. INTERACTION WITH OTHER SYSTEM
COMPONENTS

Now that the finite-state natural language understanding pro-
cess and its definition syntax has been described, the communi-
cation between the speech recogniser, natural language under-
standing and dialogue control components can be considered in
greater detail. The block diagram in figure 8 illustrates what is
described in the following.

The speech recogniser accepts audio input from a micro-
phone or telephone card, and delivers the recognition result to
the natural language understanding component in the form of a
text string. Since only those word sequences that are covered
by the particular finite-state network used by the understanding
component can be parsed and hence “understood”, the speech
recogniser makes use of this same finite-state network to con-
strain its recognition search. In this way it is guaranteed that all
utterances output by the recognition process can also be parsed
by the understanding component.

The speech recogniser is under the control of the natural
language understanding component, which determines the com-
mencement and termination of the recognition process. Once
the recognition and understanding processes are complete, the
understanding module passes the names and values of all vari-
ables returned from the root understanding grammar back to the
dialogue control module.

The dialogue controller determines the most appropriate
next action to take on the basis of the dialogue history as well as
the newly obtained information from the natural language under-
standing component. In doing so the dialogue controller there-
fore also identifies the natural language understanding grammar
that will be appropriate for processing the user’s response to the
system’s next action. The identity of this grammar as well as
the signal to start the next recognition and understanding phase
is passed from the dialogue controller to the natural language
understanding understanding component.

6. SUMMARY AND ONGOING WORK

This paper has described the architecture of the natural lan-
guage understanding component that is under development as
part of the DACST-AST project. Natural language understand-
ing is achieved by finite-state networks that are defined by means
of a regular grammar whose syntax has been described. Modu-
lar design and development is made possible by allowing calls
from one finite-state network to another with appropriate vari-
able passing. While the finite-state parser and the understanding
architecture as described here have been developed, their inte-
gration with the speech recognition and dialogue management
components is still in progress and will be reported on in future.

2The name of a grammar type is reflected by the name of the file in
which it is defined.

Recognition
Speech

Networks
Finite−state

Dialog
Control

R
E

C
O

G
N

IS
E

D
 U

T
T

E
R

A
N

C
E

R
E

C
O

G
N

IT
IO

N
 S

T
A

R
T

/S
T

O
P

INPUT
AUDIO

G
R

A
M

M
A

R
 ID

E
N

T
IT

Y

U
N

D
E

R
S

T
A

N
D

IN
G

 S
T

A
R

T
/S

T
O

P V
A

R
IA

B
LE

 N
A

M
E

S
 &

 V
A

LU
E

S

(M
E

A
N

IN
G

)
G

R
A

M
M

A
R

G
R

A
M

M
A

R
 ID

E
N

T
IT

Y

Language
Understanding

Natural

Figure 8: Interaction between system components.

7. REFERENCES

[1] Barnard, E; Halberstadt, A; Kotelly, C; Phillips, M; A con-
sistent approach to designing spoken-dialog systems, Pro-
ceedings of the Automatic Speech Recognition and Under-
standing Workshop, Keystone, Colorado, December 1999,
pp. 363-368.

[2] Carlson, R; Hunnicutt, S; Generic and domain-specific as-
pects of the Waxholm NLP and dialog modules, Proceed-
ings of the International Conference on Spoken Langua ge
Processing, Philadelphia, 1996, pp. 677-680.

[3] Jurafsky, D; Wooters, C; Tajchman, G; Segal, J; Stolcke,
A; Fosler, E; Morgan, N; The Berkeley Restaurant Project,
Proceedings of the International Conference on Spoken
Langua ge Processing, Yokohama, 1994, pp. 2139-2142.

[4] Louw, P.H; Roux, J.C; Botha, E; African Speech Technol-
ogy (AST) Telephone Speech Databases: Corpus design
and contents. Proceedings of Eurospeech 2001, Aalborg,
Denmark, 2001, pp. 2055-8.

[5] McTear, M.F; Modelling spoken dialogues with state tran-
sition diagrams: experiences with the CSLU toolkit, Pro-
ceedings of the International Conference on Spoken Lan-
gua ge Processing, Sydney, 1998.


