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Abstract

It has been demonstrated repeatedly that the acoustic models of a speaker-independent speech recognition system can benefit
substantially from the application of unsupervised adaptation methods as a means of speaker enrollment. Unsupervised
adaptation has however not yet been applied to the statistical language model component of the recognition system. We
investigate two techniques with which a first-pass recognition transcription is used to adapt the parameters of then-gram
language model that is used in the recognition search. It is found that best results are achieved when both methods are
employed in conjunction with each other. The performance of the adaptation methods were determined experimentally by
application to the transcription of a set of lecture speeches. Improvements both in terms of language model perplexity as
well as recognition word error-rate were achieved.
Keywords: Statistical language modeling, unsupervised adaptation, speech recognition.
Computing Review Categories:I.2.7.

1 Introduction

The task of a speech recognition system is to automatically
produce a text transcript of a passage of human speech.
State-of-the-art systems take a probabilistic view of this
problem and search for that sequence of wordsw that is
most likely givenx, the acoustic signal obtained from the
microphone. In particular, a speech recogniser finds that
word sequencew which maximises the conditional proba-
bility P(w|x). Bayes rule shows that this is equivalent to
determining:

argmax
w

{
P(x |w) ·P(w)

}

From this equation we see that two probabilistic com-
ponents are employed in the recognition search: anacoustic
modeland alanguage model. The former estimates the like-
lihoodP(x|w) of the speech signal, given a hypothesisw of
the uttered word sequence. Normally the acoustic model
consists of a set of hidden Markov models (HMMs) repre-
senting the phonemes of the language in question. In con-
trast, the language model will estimate the likelihoodP(w)
of this hypothesised word sequence without regard for the
acoustic evidence. Hence this second component reflects
the linguistic patterns of the language.

Both the acoustic model and the language model are
normally exposed to a great variety of data during train-
ing to ensure subsequent good performance under a wide
variety of test conditions. For example, the training data

will contain speech gathered from many different speakers
to afford the system robustness to changes in voice quality,
accent and speaking style. Such speaker-independent mod-
els can be expected to fare well across a wide variety of test
speakers. Better performance can however be achieved for
any particular test speaker by using an acoustic model bet-
ter tuned to the individual in question. Ideally this model
would be trained on data obtained exclusively from this
speaker, but this is rarely possible since several hours of
recorded and transcribed speech are normally required for
the training process.

Although the test conditions may be unknown in ad-
vance, they normally remain constant for some significant
length of time. During this period both the acoustic and the
language model can benefit fromadaptation. For exam-
ple, the speaker and the topic of discussion may remain un-
changed for the length of a conversation. Hence the acous-
tic models can be adapted to more closely match the char-
acteristics of the speakers voice, and the language model
adapted to better model the subject and style of the conver-
sation.

If the correct transcription of the adaptation data is
available and used to accomplish this, the adaptation issu-
pervised. This style of adaptation has been shown to be
successful both when applied to the acoustic model as well
as to the language model. If instead the speech recogniser
is employed to produce a (generally errorful) transcription
of the adaptation data, and this is subsequently used to up-
date the models, the adaptation isunsupervised. Supervised
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adaptation generally is more effective than unsupervised
adaptation. Indeed, due to the presence of recognition er-
rors in the automatically determined transcription there is
no guarantee that unsupervised adaptation will not be detri-
mental to model quality. However the need for a manually
obtained correct transcription of the adaptation data may be
inconvenient in practice. Hence unsupervised adaptation
may remain an attractive option.

This paper deals with the experimental evaluation of
unsupervised language model adaptation using two ap-
proaches that have been shown to perform well for super-
vised adaptation. The individual elements of this strategy
have mostly already been reported elsewhere in the litera-
ture, and this is indicated at the pertinent points. This work
considers a novel combination of adaptation methods and
includes a complete evaluation in terms of both recognition
word-error rates and language model perplexities.

2 Language modelling

Consider a word sequencew consisting ofL words:

w(1,L) = {w(1),w(2), . . . ,w(L)}
The language model estimates the prior probability

P(w) of this sequence. This joint probability may be de-
composed into a product of conditionals as follows:

P(w(1,L)) =
L

∏
i=1

P(w(i)|w(1, i−1))

In practice the conditional probability distributions
P(w(i) |w(1, i−1) must be estimated for each conditioning
contextw(1, i−1) from a finite data corpus of example text.
The number of different word sequencesw(0, i−1) with i
larger than 2 or 3 is impractically large, rendering such es-
timation infeasible. For this reason these conditioning con-
texts are normally approximated by the most recentn−1
words:

P(w(i) |w(1, i−1)) ≈ P(w(i) |w(i−n+1, i−1))

Such models are termedn-gram models. In practice,n
is normally limited to 2 (bigram) or 3 (trigram). This is the
type of model used in most state-of-the-art recognition sys-
tems, and that we will consider in this work. Nevertheless,
alternatives to this basicn-gram model are available. For
example, word classes may be used instead of individual
words in then-gram probability estimates [10]. By group-
ing words according to some meaningful measure (such
as their grammatical function) more robust probability es-
timates can be obtained from limited data. Alternatively,
cache- or trigger-basedmodels have been proposed as a
means of capturing probabilistic dependencies between dis-
tant words [8], [11]. Due to their dependence onn-tuples,

n-gram language models cannot by themselves capture pat-
terns spanning more thann consecutive words.

3 The Task

The language model adaptation methods will be evaluated
by applying them to a recognition system for recorded
Japanese lecture speeches. The speech data for this task
and their transcriptions were provided by the Japanese na-
tional research project on Spontaneous Speech [14]. All the
lecture speeches were recorded at conferences on speech,
acoustics, linguistics and the Japanese language, and hence
the variety of topics under discussion is highly constrained.
Language model adaptation for this task can be expected
to be difficult due to the high degree of uniformity of the
subject matter among the training speeches.

Our speech corpus consisted of a total of 158 speeches,
spoken by both male and female speakers and with an ap-
proximate average lecture length of 15 minutes. We have
set aside 7 speeches as a development test set (dev-test here-
after) and another 7 as an evaluation test set (eval-test here-
after). The development test set will be used to optimise
the various parameters of the adaptation process, while the
evaluation test set will be kept aside for later independent
evaluation. The specification of these sets is given in Ta-
ble 1.

Data set #Speeches Total length #Words

Development 7 2.0h 22,576
Evaluation 7 3.2h 35,476
Training 144 38h 413,484

Table 1: Development, evaluation and training data.

The acoustic models are constructed using the data in
the training set, and are not altered during the subsequent
language model adaptation process. A baseline language
model is obtained from the same training corpus and is used
to obtain a first-pass recognition result. This is used to-
gether with the training set to adapt the baseline language
model, which is then used in a second recognition pass.
This process of language model adaptation can be iterated.
The procedure is illustrated in Figure 1.

Note that the transcriptions of the 144 training speeches
were the only source of language modeling data used in this
work.

4 Language model adaptation

Language model adaptation is most often performed in a
supervised manner. This assumes the availability of a well-
trainedbackgroundlanguage model together with a rela-
tively small amount of adaptation text from the target do-
main. The goal is to use this text to adapt the background
model so that it will exhibit better performance on further
material from the target domain. Good results have been
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Figure 1: The language model adaptation process.
achieved for this mode of adaptation using for example
Bayes and MAP adaptation [2], linear interpolation [7] and
minimum discriminative estimation [6].

Supervised adaptation requires the target domain and
adaptation text to be availablea-priori. In situations where
this is not possible, unsupervised adaptation becomes at-
tractive. As explained in section 1, this mode of adaptation
treats the output of a previous recognition pass as adapta-
tion text data from the target domain. Sections 4.1 and 4.2
describe the techniques used in this work.

4.1 Text selection

In order to obtain a language model more focused on the
target domain, we may try to identify a subset of the train-
ing material that is in some sense closest to the target do-
main, and then adapt the background language model us-
ing this subset. We will achieve this by selecting from
the 144 speeches in the training corpus a set of speeches
judged most similar in character to the current recogni-
tion hypothesis. In order to measure the similarity be-
tween two speeches, we use an information retrieval mea-
sure known asterm frequency inverse document frequency
(tf-idf) [12]. Let there beD speeches (documents) in the
training set. Denote the words of the training set vocabu-
lary by{w1,w2, . . . ,wV}, whereV is the size of the vocabu-
lary. Define theterm frequencyt f (di ,w j) as the number of
times the wordw j occurs in documentdi . Finally define the
inverse document frequencyid f (w j) to be:

id f (w j) =
D

number of documents containingw j

Hence the inverse document frequency is large when
the wordw j occurs in few documents. The tf-idfT (di ,w j)
of documentdi and wordw j is defined by:

T (di ,w j) = t f (di ,w j) · log(id f (w j))

The term frequency is large for frequent words, while
the inverse document frequency is large for words occur-
ring in few documents. HenceT (di ,w j) will be large when
w j occurs often indi but does not occur in many other doc-
uments. Such words may be expected to be good discrimi-
nating characteristics of the documentdi .

A measure of similarityS(di ,dk) of two documentsdi

anddk can now be defined:

S(di ,dk) =

V
∑
j=1

(T (di ,w j) ·T (dk,w j))
√√√√

(
V
∑
j=1

T (di ,w j)2

)
·
(

V
∑
j=1

T (dk,w j)2

)

If we define the vectort as follows:

t(di) = {T (di ,w1),T (di ,w2), . . . ,T (di ,wV)}

we see that the similarity is the cosine of the angle between
the vectorst(di) andt(dk):

S(di ,dk) =
t(di)• t(dk)

||t(di)|| · ||t(dk)||

where the “•” operator in the numerator is the vector dot
product. Two documents will therefore be judged similar
when corresponding words exhibit a high tf-idf. For such
documents the vectorst(di) andt(dk) will be directed in a
similar direction, and hence the cosine of the angle between
them will be close to 1.

SinceT (di ,w j) is positive or zero,S(di ,dk) varies be-
tween 0 (for unrelated documents) and 1 (for highly related
documents).

In order to identify the documents most closely related
to the recognition hypothesisdx, the similarityS(di ,dx) is
calculated for each documentdi , i = 1,2, . . . ,D. All docu-
ments for which:

S(di ,dx) > γ ·Smax (1)

are selected as adaptation material for the language model,
where

Smax = max
i

S(di ,dx)

and0≤ γ ≤ 1. Whenγ < 1, at least one document will be
selected for use as adaptation material.
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The tf-idf measure is employed in a similar fashion in
[9] to identify relevant documents from a much larger train-
ing corpus for supervised language model adaptation. A re-
lated text-similarity measure is employed in [5] to optimise
the training set of a language model for a particular target
domain.

Linear interpolation
Once a subset of the training set has been selected by means
of the tf-idf measure, this data must be used to adapt the
background language model. This was achieved by build-
ing an n-gram language model from the adaptation data,
and then forming a linear interpolation.

Pa(w|h) = λ(h) ·Pb(w|h)+(1−λ(h))P̂a(w|h)

In the above equationw indicates the word for which
the probability is sought, andh the context upon which the
language model will base its estimate of the probability.
Then Pb(w|h) represents the background model,P̂a(w|h)
the language model obtained from the adaptation data, and
Pa(w|h) the adapted language model. Each unique contexth
has an associated interpolation weightλ(h) since some con-
texts inP̂a(w|h) may be expected to be better trained than
others. The interpolation parametersλ(h) were determined
iteratively by means of the EM algorithm [7] as follows:

λ̂(h) =
1

Nw(h) ∑
∀w∈∗|h

λ(h)·Pb(w|h)
λ(h)·Pb(w|h)+(1−λ(h))·P̂a(w|h)

Here λ̂(h) is the updated interpolation parameter and
Nw(h) is the number of words in the adaptation set occur-
ring in the contexth. The summation is over all such words
in the adaptation set, i.e.:

Nw(h) = ∑
∀w∈∗|h

1

Since there are generally few adaptation data, it is not
possible to train interpolation parameters for each contexth.
Hence the set of histories were clustered according to their
occurrence counts in a fashion similar to that presented in
[2]. Starting from the lowest occurrence counts, contexts
are merged successively into clusters so that each cluster
is seen at least a threshold number of times in the adap-
tation data. This threshold was determined empirically by
optimising the perplexity of interpolated models on the de-
velopment test set. A value of 10 was found to yield good
results, but the performance of the interpolated models was
seen to be weakly dependent on the precise value. This
clustering procedure ensured that contexts seen a larger
number of times were the sole occupants of their cluster,
while contexts seen too few times for the EM optimisation
to work reliably were grouped with other contexts appear-
ing a similar number of times.

This form of linear interpolation has been shown to be
a well-performing variant of MAP adaptation [2].

A number of authors have proposed clustering the train-
ing corpus according to topic, and then adapting the lan-
guage model by linear interpolation using data from the
most relevant clusters [13] or from all clusters [7], [3].

4.2 MDE adaptation

Minimum discriminant estimation (MDE) has been applied
successfully to supervised language model adaptation in
[6]. First the adaptation data is used to estimate a unigram
distributionPa(w). The MDE method then finds an adapted
language modelPa(w|h) with the smallest Kullback-Leibler
distance to the background language modelPb(w|h) while
maintainingPa(w) as its marginal distribution, i.e.:

∑
h

Pa(w|h) ·Pa(h) = Pa(w) ∀w

Since a closed-form solution to this problem is not
available, it is normally determined iteratively by means of
the Generalised Iterative Scaling (GIS) algorithm. This al-
gorithm is very numerically intensive, so we employ the
approximate solution presented in [6]:

Pa(w|h) =
α(w) ·Pb(w|h)

∑
w

α(w) ·Pb(w|h)

where

α(w) =
(

Pa(w)
Pb(w)

)β

This can be shown to correspond to an approximate sin-
gle iteration of the GIS algorithm. A value ofβ = 0.5 was
taken for all our experiments, as recommended in [6].

The unigram probabilities were estimated using abso-
lute discounting and a minimumn-gram count of zero [1].

MDE is well-suited to adaptation in situations where
there is very little adaptation data, since the technique re-
quires only the estimation of a unigram distribution of the
target domain, and no higher-ordern-gram distributions.

5 Experimental evaluation

The two techniques described in section 4 were applied to
the lecture speech task introduced in section 3. This sec-
tion describes the experimental setup and presents perplex-
ity and word error-rate results.

5.1 Baseline language model

The 413K words present in the reference transcription of
the 144 training speeches were used to train a backoff tri-
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gram language model [4] using the CMU language mod-
elling toolkit [1]. All experiments employed a closed vo-
cabulary comprising the approximately 13K distinct words
found in all 158 transcriptions in the lecture speech task.
The trigram language model included all bigrams but ex-
cluded trigrams occurring only once. A minimum count of
12 was specified for unigrams. These parameters were de-
termined by approximately optimising the perplexity mea-
sured on the reference transcription of the development-
test (dev-test) set. The resulting model contains 109K bi-
grams and 45K trigrams, and gives perplexities of 130.14
and 122.68 on the dev-test and eval-test set reference tran-
scriptions respectively.

5.2 Acoustic models

A preexisting set of acoustic models that had been trained
on Japanese read speech was available for the purposes
of this research. Baseline acoustic models were obtained
by retraining these models on the 144 speeches in the
training set. This resulted in a set of tree-based state-
clustered speaker-independent cross-word triphone models
with 2000 states, 16 Gaussian mixtures per state and di-
agonal covariance matrices. The acoustic parameterisation
consisted of 12 MFCCs, energy, and deltas, resulting in 26-
dimensional feature vectors.

5.3 Speech recognition engine

Decoding was performed with a time-synchronous beam-
search decoder that performs the Token-Passing procedure
[16] in a composition of Weighted Finite State Transducers
[15]. The search is performed on each complete lecture
speech in a single time-synchronous Viterbi-decoding run
without incorporation of other means of segmentation.

The decoder makes use of a precompiled search net-
work that includes the HMM structure, dictionary and the
baseline unigram language model. The respective trigram
deviation language models are composed on-the-fly. In this
respect, on-line transducer composition offers a convenient
approach to decoding with modified language models that
does not require expensive precomputation of the resulting
transducer composition [15].

5.4 Adaptation by text selection

In order to evaluate language model adaptation by text se-
lection, the algorithm described in section 4.1 was used to
identify lecture speeches in the training set similar to the
recognition hypothesis dev-rec0 obtained by decoding the
dev-test set with the baseline language model LM0. The
speeches identified in this way were used to adapt the base-
line language model LM0 by means of linear interpolation,
resulting in an adapted language model LM1. A second
iteration was then performed in which a new set of lec-
ture speeches are identified using the recognition hypoth-

esis dev-rec1 obtained by decoding the dev-test set with
the already adapted language model LM1. These speeches
were once again used to adapt LM1 by means of linear in-
terpolation to yield LM2. The process is illustrated in Fig-
ure 2.

Language model training set

Baseline
language model

selection
Text

interpolation
Linear

language model
Adapted

Recogniser

output
first−pass

language model
Adapted

Recogniser

output
3rd−pass

selection
Text

interpolation
Linear

output
2nd−pass

(LM0)

Selected
documents

(LM1)

(dev−rec0)

(LM2)

Selected
documents

(dev−rec1)

Test set

Recogniser

Figure 2: Language model adaptation by text selection.

Table 2 shows the perplexity of the adapted language
model LM1 measured both on the development-test refer-
ence transcription (dev-ref) as well as the recognition hy-
pothesis (dev-rec0) for a number of different choices of the
parameterγ used in equation 1. The table shows a minimum
at γ = 0.35 for the perplexity measured both on dev-ref and
on dev-rec0. This strong correlation is remarkable, particu-
larly since the high word error-rate implies that dev-ref and
dev-rec0 differ significantly. The minimum is quite shal-
low and therefore the exact value ofγ does not appear to be
critical.

Threshold Avg. selected Perplexity

γ documents dev-ref dev-rec0

0.1 89 124.98 102.21

0.15 66 123.70 101.59

0.25 38 122.43 101.02

0.35 24 121.83 100.73
0.50 10 122.78 101.05

Table 2: Optimisation of the thresholdγ.
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Table 2 also indicates the average number of documents
selected by the test-selection procedure for each of the 7
speeches in the test set.

Language Perplexity WER

model dev-ref dev-rec0 dev-rec1 %

LM0 130.14 107.16 - 33.5

LM1 121.83 100.73 100.04 32.8

LM2 121.49 - 99.14 32.7

Table 3: Adaptation by text selection (dev-test).

Table 3 shows the recognition results for both iterations
of adaptation usingγ = 0.35 as determined from Table 2.
Adaptation has lead to a 2.4% relative reduction in word-
error rate and a 6.6% relative reduction in perplexity mea-
sured on the reference transcription (dev-ref).

In order to determine how robust the text selection mea-
sure is to the relatively high number of recognition errors in
the transcription, adaptation was also carried out using the
reference transcription (dev-ref) instead of the recognition
outputs (dev-rec0 and dev-rec1), as illustrated in Figure 3.

Test set

Language model training set

Baseline
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selection
Text
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documents
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Figure 3: Language model adaptation by cheated text se-
lection.

This experimental setup amounts to cheating, since the
reference transcription is employed during adaptation. Its
purpose is to measure an upper bound on the performance
that can be achieved by text selection as a method of adap-
tation. The results are shown in Table 4.

Language Perplexity WER

model dev-ref %

LM0 130.14 33.5

LMC 119.01 32.7

Table 4: Adaptation by cheated text selection (dev-test).

From these results we see that the recognition error
rate of 32.7% achieved when cheating is the same as that
achieved after 2 iterations of unsupervised text selection
(Table 3), and very close to that achieved after a single it-
eration of the same. This suggests that the text-selection
measure is a highly robust to recognition errors, making it
a particularly good choice for unsupervised adaptation.

5.5 MDE adaptation

In this case, the baseline language model LM0 is adapted by
MDE as described in section 4.2 using as adaptation mate-
rial the recognition hypothesis dev-rec0 obtained from the
recognition pass with LM0. This results in a new language
model LM3. A further recognition experiment using LM3
yields a new recognition hypothesis dev-rec2 which is used
to perform a second iteration of MDE to produce LM4. The
results of this process are presented in Table 5 and the pro-
cess illustrated in Figure 4.

Language model training set

Baseline
language model

MDE
adaptation

language model
Adapted Recogniser

language model
Adapted Recogniser

output
2nd−passMDE

adaptation

output
3rd−pass

Recogniser

output
first−pass

(LM0)

(LM3)

(LM4)

(dev−rec2)

(dev−rec0)

Test set

Figure 4: Language model adaptation by MDE.

Language Perplexity WER

model dev-ref dev-rec0 dev-rec2 %

LM0 130.14 107.16 - 33.5

LM3 89.12 66.96 65.41 31.8

LM4 87.95 67.26 63.27 31.7

Table 5: Adaptation by MDE (dev-test).
From Table 5 we see that a single iteration of MDE

achieves a 5.1% relative decrease in the word error-rate and
a 31.5% relative decrease in perplexity measured on the
reference transcription (dev-ref). Hence the improvements
are much larger than for text selection as presented in sec-
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tion 5.4. The second iteration of MDE adaptation achieves
much smaller improvements.

5.6 Combined adaptation

Table 6 presents perplexity and recognition results when
performing text selection and MDE adaptation in succes-
sion. Text selection is performed first to update the baseline
language model LM0 using the recognition hypothesis dev-
rec0, as in Table 3. The resultant language model LM1 is
then adapted by MDE, again using dev-rec0, to yield a new
language model LM5. The perplexity of 86.30 and word
error-rate of 31.7% are slightly better than those achieved
in Tables 3 and 5 by applying just one of the adaptation
methods.

Language Perplexity WER
model dev-ref dev-rec0 dev-rec3 dev-rec4 %

LM0 130.14 107.16 - 33.5
LM1 121.83 100.73 - - 32.8
LM5 86.30 64.78 64.52 - 31.7
LM6 86.28 - 64.50 - -
LM7 79.18 - 54.36 55.18 31.2
LM8 79.06 - - 55.18 -
LM9 78.22 - - 51.28 31.2

Table 6: Adaptation by text-selection and MDE (dev-test).

Another two iterations of combined adaptation were
performed, and the results are included in Table 6 (refer
to Table 8 for a key to the abbreviations used). The second
iteration of text-selection followed by MDE leads to signif-
icant further improvements, while the third iteration shows
no significant further gains. Overall the development-test
word error rate has been improved by 6.9% relative. The
first two iterations of the adaptation process are illustrated
in Figure 5.

Finally, Table 7 shows the corresponding set of experi-
ments applied to the evaluation-test set. Improvements are
smaller than for the development-test set but show a similar
tendency.

Language Perplexity WER
model eval-ref eval-rec0 eval-rec3 eval-rec4 %

LM0 122.68 92.11 - 36.9
LM10 113.62 86.54 - - -
LM11 89.85 62.40 62.14 - 35.8
LM12 89.72 - 62.12 - -
LM13 86.62 - 55.23 56.23 35.7
LM14 86.30 - - 56.16 -
LM15 88.18 - - 53.34 35.7

Table 7: Adaptation by text-selection and MDE (eval-test).

Language model training set

Baseline
language model
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MDE
adaptation

language model
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Figure 5: Language model adaptation by text selection and
MDE.
6 Summary and conclusions

We have evaluated two methods of unsupervised language
model adaptation. Both methods were able to reduce lan-
guage model perplexity as well as the recognition word
error-rate for a Japanese large vocabulary transcription task.
When used in conjunction with one another, further im-
provements were achieved. The text-selection distance
metric in particular has been demonstrated to be highly ro-
bust to speech recognition errors.

These results are promising, especially in view of the
small amount of language model training data that was
available and its highly constrained nature. They demon-
strate the successful adaptation of the language model to
the topic and style of each speaker in an unsupervised man-
ner. The extension of these methods to larger text corpora,
the incorporation of confidence measures and the combina-
tion with unsupervised acoustic model adaptation remains
the subject of ongoing work.
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Label Description

LM0 Baseline (background) trigram language
model.

dev-ref Reference transcription for dev-test set.
dev-rec0 Dev recognition hypothesis using LM0.
LM1 LM0 adapted by text selection on dev-rec0.
dev-rec1 Dev recognition hypothesis using LM1.
LM2 LM0 adapted by text selection on dev-rec1.
LM3 LM0 adapted by MDE on dev-rec0.
dev-rec2 Dev recognition hypothesis using LM3.
LM4 LM3 adapted by MDE on dev-rec2.
LM5 LM1 adapted by MDE on dev-rec0.
dev-rec3 Dev recognition hypothesis using LM5.
LM6 LM5 adapted by text selection on dev-rec3.
LM7 LM6 adapted by MDE on dev-rec3.
dev-rec4 Dev Recognition hypothesis using LM7.
LM8 LM7 adapted by text selection on dev-rec4.
LM9 LM8 adapted by MDE on dev-rec4.
eval-ref Reference transcription for eval-test set.
eval-rec0 Eval recognition hypothesis using LM0.
LM10 LM0 adapted by text selection on eval-

rec0.
LM11 LM10 adapted by MDE on eval-rec0.
eval-rec2 Eval recognition hypothesis using LM11.
LM12 LM11 adapted by text selection on eval-

rec2.
LM13 LM12 adapted by MDE on eval-rec2.
eval-rec3 Eval recognition hypothesis using LM13.
LM14 LM13 adapted by text selection on eval-

rec3.
LM15 LM14 adapted by MDE on eval-rec3.

Table 8: Legend for labels used in Tables 3 to 7.
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