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1. Introduction
® Aim: specialise well-trained baseline model
to particular character of current recognition task

e Supervised adaptation performs well but requires
reference sample from target domain

® Unsupervised adaptation uses transcript generated
by recogniser for adaptation
» No reference material required
» Errors in transcript: deteriorated performance

® |ssues: data sparseness and error reinforcement

2. The task

® Japanese speech & language conferenceslectures
= Domain is highly constrained

Data set | #Lectures | Length | #Words
Dev 7 2.0h 23k
Eval 7 3.2h 35k
Train 144 38h 413k

® Only source of language model training data

® Baseline trigram language model

® Tree—based state—clustered S| cross-word triphone
e Closed 13K vocabulary

3. Adaptation process

Text selection
® Use 1st—pass transcription to identify subset of
training corpus most relevant to current lecture

® Measure similarity usingterm frequency
inverse document frequency (tf-idf) :

T(diw;) = f(ds, wj) -og (idf (w;))
where

if(diyw;) = #occurrances of w; in d;
and

) = total #documents

#documents containing w;

® Similarity between two documents:

5, (Tow,) - Tla )

® The tf-idf is large when W occurs often
in d; but not in many other documents

S(didy) =

2 2
(5 Ttam) - (5 700 mi)

® Linear interpolation with baseline LM

Minimum Discriminant Information

@ Estimate unigram distribution P, (w) from
adaptation data

® MDE finds adapted model P, (w|h) that is as
close as possible (KL distance) to baseline
model P, (w|h) while keeping marginal P, (w)

Y Pa(wlh) Pu(h) = Pa(w) Vu
h

® Approximate solution  (kneseret al, Eurospeech 97)

a(w) - Py(w|h)

Falwlh) = o) Bwh

a(w) =

Text-selection only

4. Experiments

MDE only

Combined text-selection and MDE
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dev-ref |dev-recO dev-ref |dev-recO| dev-recl
LMO | 130.1 | 107.2 | 335 LMO| 130.1 | 107.2 - 33.5 interpolation
LM1 | 121.8 100.7 32.8 LM2 89.1 67.0 65.4 31.8
LM3 88.0 67.3 63.3 31.7
Adapted LM) ==> ||Recogniser|| <=
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5. Summary & conclusion dev-ref o) || eva ari-pass
) . . _ _ N tput
® Text-selection and MDE both improve perplexity and word LMO | 130.1 | 107.2 33.5 36.9 ‘(d(::f:sca)
error—rate for a Japanese lecture speech transcription task LM1 | 121.8 | 100.7 - - 32.8 -
LM4 | 86.3 64.8 | 64.5 - 31.7 || 35.8 (@iterations)
® In conjunction with each other: further gains LM5 86.3 - 64.5 - - -
. . . LM6 79.2 - 54.3 55.2 31.2 35.7
® Training corpus small & task highly constrained M7 79.0 _ 55.2 _ _
e Promising for larger & more diverse language model corpora LMS8 78.2 - 51.3 31.2 35.7
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