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5. Summary & conclusion
Text−selection and MDE both improve perplexity and word
error−rate for a Japanese lecture speech transcription task

In conjunction with each other: further gains

MDE only

4. Experiments2. The task1. Introduction

Presented at the International Conference on Spoken Language Processing (ICSLP)  , Denver, September 2002.

Unsupervised Language Model Adaptation for Lecture Speech Transcription

to particular character of current recognition task

Supervised adaptation performs well but requires

Unsupervised adaptation uses transcript generated
by recogniser for adaptation

Text selection

Estimate unigram distribution
adaptation data

MDE finds adapted model

model

Approximate solution (Kneser et al, Eurospeech 97)

from

Department of Electronic Engineering, University of Stellenbosch, South Africa
Speech Open Lab, NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan

that is as

while keeping marginal
close as possible (KL distance) to baseline

Minimum Discriminant Information

3. Adaptation process

Thomas Niesler   and   Daniel Willett

Japanese speech & language conferenceslectures
Domain is highly constrained

No reference material required
Errors in transcript: deteriorated performance
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Use 1st−pass transcription to identify subset of
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Measure similarity using term frequency 
inverse document frequency (tf−idf) :
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