

A Comparison of Part-of-Speech and Automatically Derived **Category–Based Language Models for Speech Recognition**

T.R. Niesler, E.W.D. Whittaker and P.C. Woodland

Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ, England http://svr-www.eng.cam.ac.uk

1. Introduction

- Word n-grams suffer from data sparseness
- Category n-grams generalise to unseen word sequences => improved robustness
- Competitive performance for small training sets
- Combining word with category n-grams improves performance, even for large training sets
- Performance depends on category definitions
- Here we compare
 - · Part-of-speech based categories, and
 - Automatically determined categories
 - in terms of Perplexity, and

Example categories:

Example categories:

everybody ... }

nonetheless, similarly ... }

Word–error rate

2. Category definitions

Automatically determined categories

First word

• 152 categories from tagged LOB corpus

Part-of-speech categories

{ however, meanwhile, indeed, separately

moreover, nor, neither, nevertheless,

{ iran, dextrel, anvone, brazil, someone, everyone, moscow, israel, iraq, parliament,

midyear, diligence, midafternoon, midmorning, sept ... }

{ march, december, midnight, midday, noon,

- Words may belong to several categories

Algorithm: (Kneser & Ney, Eurospeech 93)

•For all words

- Take word from its category
- For all categories:
- Put word in category • Calc bigram training set ALL
- Move word to category for which ΔLL is greatest

n	n-grams (millions)	Interpolated perplexity	WER (eval)
2	0.21	152.0	12.4
3	2.70	139.2	11.8
4	1.47	132.8	11.7
5	0.27	131.8	11.7
6	0.03	131.7	11.7

ARPA CSR 94 HUB-1 Evaluation

· Built several category-based models

One using part-of-speech classes

Various using automatically-derived categories

• Training: 37 M words 1987-89 Wall Street Journal

• Interpolation weight minimises dev word error rate

DARPA 97 Broadcast News Eval

- Use 1000 categories
- Recognition by lattice rescoring

Model	n–grams (millions)	Perplexity	WER	
Word 4g	23.9	147	17.3	
Cat 3g	7.9	238	-	
Interp	31.8	137	16.8	

Language model performance for BN-9

4. Experiments

Category type	Number of categories	n–grams (millions)	Standalone perplexity	Interpolated perplexity	WER (eval)
POS	152	0.91	448.5	139.4	12.3
CLUST-0	150	1.04	301.1	142.2	12.2
CLUST-1	150	2.13	289.5	139.1	11.9
CLUST-2	200	2.70	265.8	136.9	11.9
CLUST-3	500	4.68	212.2	131.7	11.7
CLUST-4	1,000	6.38	184.4	129.7	11.8
CLUST-5	2,000	8.38	167.8	129.4	12.0
Word	65,000	4.88	148.8	148.8	12.5

Performance of various category language models for 1994 HUB-1

5. Conclusions

- Even with equal number of n-grams, automatically-derived categories perform better
 - Clustering distributes words evenly among categories
 - Uneven distibution in part-of-speech categories

• As number of categories increase, performance reaches optimum

- Ability to generalise deteriorates with too many categories
- · Generalisation allows word n-gram performance to be improved

• Performance improvement is negligible for n > 4

3. Variable-length n-grams

• Selectively increase length of individual n-grams

Optimise performance while minimising model size

Previous word

Category n-gram probability estimate

Next word

according to expected performance benefit

Leaving-one-out cross validation

Initialisation:

• Most frequent words in individual categories

Category

n-tuples

Word

history

Remaining words grouped in single category

ADJ = {able,abnormal, ... ,light,,yellow,young} "light" ∈ {ADJ, NOUN, VERB}