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4. Experiments3. Variable−length n−grams1. Introduction
Selectively increase length of individual n−grams
according to expected performance benefit
Leaving−one−out cross validation

Optimise performance while minimising model size

Word n−grams suffer from data sparseness

Category n−grams generalise to unseen word

Competitive performance for small training sets

Combining word with category n−grams
improves performance, even for large training sets

sequences => improved robustness

Performance depends on category definitions

Here we compare

Part−of−speech based categories, and

Automatically determined categories

in terms of

Perplexity, and

Word−error rate

5. Conclusions

152 categories from tagged LOB corpus

Example categories:

Take word from its category

For all categories:

Put word in category

Example categories:

Calc bigram training set

Part−of−speech categories

{ however, meanwhile, indeed, separately
moreover, nor, neither, nevertheless, 
nonetheless, similarly ... }

{ iran, dextrel, anyone, brazil, someone,
everyone, moscow, israel, iraq, parliament,
everybody ... }

{ march, december, midnight, midday, noon,
midyear, diligence, midafternoon,
midmorning, sept ... }

...

...

. . . . . . .

First word Previous word

Next word

Category
n−tuples

Words may belong to several categories

Category n−gram probability estimate

Word
history

Recognition by lattice rescoring

Language model performance for BN−97

Use 1000 categories
Even with equal number of n−grams, automatically−derived

Performance of various category language models for 1994 HUB−1

Interpolation weight minimises dev word error rate

N−best rescoring (N = 100) with 65K HTK recogniser

Training: 37 M words 1987−89 Wall Street Journal

Combined with baseline trigram by linear interpolation

One using part−of−speech classes

Various using automatically−derived categories

Effect of n−gram length for 1994 HUB−1

ARPA CSR 94 HUB−1 Evaluation

2. Category definitions

DARPA 97 Broadcast News Eval

A Comparison of Part−of−Speech and Automatically Derived

Built several category−based models

Generalisation allows word n−gram performance to be improved

Ability to generalise deteriorates with too many categories

Performance improvement is negligible for n > 4

As number of categories increase, performance reaches optimum

Uneven distibution in part−of−speech categories

categories perform better

Clustering distributes words evenly among categories

T.R. Niesler, E.W.D. Whittaker and P.C. Woodland
Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ, England

http://svr−www.eng.cam.ac.uk

Automatically determined categories

∆

Presented at the International Conference on Acoustics, Speech and Signal Processing, Seattle, May 1998.

LL

Move word to category for which

is greatest

"light"     {ADJ, NOUN, VERB}

ADJ = {able,abnormal, ...  ,light, ...
... ,yellow,young}


