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Summary
1. Features for dynamic time warping (DTW) in an almost zero-resource setting for

a keyword spotting (KWS) application are compared.
2. The keyword spotting systems aid the United Nations (UN) humanitarian relief

efforts in parts of Africa with severely under-resourced languages.
3. The objective is to identify acoustic features that provide acceptable KWS per-

formance in such environments.
4. A small, independently compiled set of isolated keywords is the only supervised

resource.
5. Multilingual bottleneck features (BNFs) from well-resourced out-of-domain lan-

guages and correspondence autoencoder (CAE) features are evaluated.
6. BNFs and CAE features achieve modest (> 2%) performance improvements over

baseline MFCCs.
7. BNFs as input to the CAE result in notable (> 11%) performance improvements

over MFCCs for two evaluated languages, English and Luganda.
8. Integrating BNFs with the CAE allows both large out-of-domain and sparse in-

domain resources to be exploited for improved ASR-free keyword spotting.
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• Live audio from phone-in radio
talk shows is processed and
monitored for keywords.

• Current ASR-based radio
browsing systems require large
annotated speech resources.

• Dynamic time-warping (DTW)
keyword spotting systems:

– are word template-based;

– can perform in an almost
zero-resource setting.
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• Various feature extractors are
evaluated.

• Autoencoder (AE) and corre-
spondence autoencoder (CAE)
extractors are trained on unla-
belled training data.

• Keyword templates are used to
fine-tune the CAE.

• DTW performs template match-
ing on evaluation search data us-
ing the keyword templates.

• The presence of a keyword is de-
termined by applying a threshold
to the DTW scores.

Data sets
• Search data from radio talk show speech.

– Training data is unlabelled.

– Only evaluation sets are labelled.

Set
English Luganda

#utts duration (h) #utts duration (h)

Train 5 231 7.94 6 052 5.57
Dev 2 740 5.37 1 786 2.04
Test 5 005 10.33 1 420 1.99
Total 12 976 23.64 9 258 9.60

• Keywords templates are the only labelled in-
domain data and are used to train the KWS.

Language # keywords # speakers # utterances

English 40 24 1 160
Luganda 18 16 603
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Neural network feature extraction
Autoencoder

• The same feature frame is
used at the input and
output of the network.

• Hence no annotations or
labels required for training.
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Correspondence autoencoder
• Two different instances of a word aligned by DTW.
• Alignments used to train CAE.
• Factors not common to keyword pairs (speaker;

gender; channel) are suppressed, while common
factors (word identity) are enhanced.
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Multilingual bottleneck feature extractor
• Ten languages from the GlobalPhone corpus are

used at the output of the network.

BNF layer

Hidden layers
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MFCC + i-vector

Combinations of features with NNs

• AE with MFCC → AEMFCC

• AE with BNF → AEBNF

• CAE with MFCC → CAEMFCC

• CAE with BNF → CAEBNF

Conclusion
• Keyword templates are the only labelled data.
• Extractor and feature combinations can lead to im-

proved KWS performance.
• CAEBNF yielded the best performance among the

evaluated feature types.
• CAEBNF extractor uses labelled data in well-

resourced out-of-domain languages to leverage ex-
tremely sparse in-domain data.

• CAEMFCC yields comparable performance in the
absence of a multilingual BNF extractor.

• Future work includes integrating this model into a
larger keyword spotting framework and expanding
it to include more under-resourced languages.
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• AUC: Area under the receiver operating
characteristic curve.
• P@10: Precision at 10 is the proportion of correct

keyword detections among the top 10 hits.
• P@N: Precision at N is the proportion of correct

keyword detections among the top N hits.
• In terms of AUC:

CAEBNF > BNF > CAEMFCC > MFCC
• Multilingual feature extraction and target language

fine-tuning are complimentary.


