

Feature exploration for almost zero-resource ASR-free keyword spotting using a multilingual bottleneck extractor and correspondence autoencoders

Raghav Menon¹, Herman Kamper¹, Ewald van der Westhuizen¹, John Quinn², Thomas Niesler¹ ¹Stellenbosch University, South Africa; ²UN Global Pulse, Kampala, Uganda; ²University of Edinburgh, UK

Summary

- 1. Features for dynamic time warping (DTW) in an almost zero-resource setting for a keyword spotting (KWS) application are compared.
- 3. The objective is to identify acoustic features that provide acceptable KWS performance in such environments.
- 5. Multilingual bottleneck features (BNFs) from well-resourced out-of-domain languages and correspondence autoencoder (CAE) features are evaluated.
- 7. BNFs as input to the CAE result in notable (>11%) performance improvements over MFCCs for two evaluated languages, English and Luganda.
- 2. The keyword spotting systems aid the United Nations (UN) humanitarian relief efforts in parts of Africa with severely under-resourced languages.
- 4. A small, independently compiled set of isolated keywords is the only supervised resource.
- 6. BNFs and CAE features achieve modest (>2%) performance improvements over baseline MFCCs.
- 8. Integrating BNFs with the CAE allows both large out-of-domain and sparse indomain resources to be exploited for improved ASR-free keyword spotting.

Radio browsing system

Neural network feature extraction

- Live audio from phone-in radio talk shows is processed and monitored for keywords.
- Current ASR-based radio browsing systems require large annotated speech resources.
- **Dynamic time-warping** (DTW) keyword spotting systems:
 - are word template-based;
 - can perform in an almost zero-resource setting.

Autoencoder

- The same feature frame is used at the input and output of the network.
- Hence no annotations or labels required for training.

Correspondence autoencoder

- Two different instances of a word aligned by DTW.
- Alignments used to train CAE.
- Factors not common to keyword pairs (speaker; gender; channel) are suppressed, while common factors (word identity) are enhanced.

Feature extraction and evaluation

- extractors Various feature are evaluated. (AE) • Autoencoder and correspondence autoencoder (CAE)
 - extractors are trained on unla**belled** training data.

Data sets

- Search data from radio talk show speech.
 - Training data is unlabelled.
 - Only evaluation sets are labelled.

Set	English		Luganda	
001	#utts	duration (h)	#utts	duration (h)
Train	5231	7.94	6052	5.57
Dev	2740	5.37	1 786	2.04
Test	5005	10.33	1 420	1.99
Total	12976	23.64	9258	9.60

Multilingual bottleneck feature extractor

• Ten languages from the GlobalPhone corpus are used at the output of the network.

	, i	
CAE with BNF	\rightarrow	CAE _{BNE}

Keywords templates are the only labelled in-
domain data and are used to train the KWS.

# keywords	# speakers	# utterances
40	24	1 1 6 0
18	16	603
	# keywords 40 18	# keywords # speakers 40 24 18 16

Acknowledgements

We thank NVIDIA Corporation and Telkom South Africa for equipment and funding support. H. Kamper is supported by a Google Faculty Award. We thank Enno Hermann for assisting with the BNF extraction.

- AUC: Area under the receiver operating characteristic curve.
- P@10: Precision at 10 is the proportion of correct keyword detections among the top 10 hits.
- P@N: Precision at N is the proportion of correct keyword detections among the top N hits.
- In terms of AUC:

 $CAE_{BNF} > BNF > CAE_{MFCC} > MFCC$

 Multilingual feature extraction and target language fine-tuning are complimentary.

Conclusion

- Keyword templates are the only labelled data.
- Extractor and feature combinations can lead to improved KWS performance.
- CAE_{BNF} yielded the best performance among the evaluated feature types.
- CAE_{BNF} extractor uses labelled data in wellresourced out-of-domain languages to leverage extremely sparse in-domain data.
- CAE_{MFCC} yields comparable performance in the absence of a multilingual BNF extractor.
- Future work includes integrating this model into a larger keyword spotting framework and expanding it to include more under-resourced languages.