1. Features for dynamic time warping (DTW) in an almost zero-resource setting for
a keyword spotting (KWS) application are compared.
3. The objective is to identify acoustic features that provide acceptable KWS per-

formance in such environments.

5. Multilingual bottleneck features (BNFs) from well-resourced out-of-domain lan-
guages and correspondence autoencoder (CAE) features are evaluated.

/. BNFs as input to the CAE result in notable (> 11%) performance improvements
over MFCCs for two evaluated languages, English and Luganda.
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Language # keywords # speakers # utterances

English 40 24 1160
Luganda 18 16 603
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e AUC: Area under the receiver operating
characteristic curve.

e P@10: Precision at 10 is the proportion of correct
Keyword detections among the top 10 hits.
e P@N: Precision at N is the proportion of correct
Keyword detections among the top N hits.
e Interms of AUC:

CAEgNE > BNF > CAEMmFcc > MFCC

e Multilingual feature extraction and target language
fine-tuning are complimentary.
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2. The keyword spotting systems aid the United Nations (UN) humanitarian relief
efforts in parts of Africa with severely under-resourced languages.
4. A small, independently compiled set of isolated keywords is the only supervised

6. BNFs and CAE features achieve modest (> 2%) performance improvements over

8. Integrating BNFs with the CAE allows both large out-of-domain and sparse in-
domain resources to be exploited for improved ASR-free keyword spotting.
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Correspondence autoencoder
e [wo different instances of a word aligned by DTW.

e Alignments used to train CAE.

e Factors not common to keyword pairs (speaker;
gender; channel) are suppressed, while common
factors (word identity) are enhanced.
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Multilingual bottleneck feature extractor

e Ten languages from the GlobalPhone corpus are
used at the output of the network.
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BNF layer

Hidden layers

MFCC + I-vector

Combinations of features with NNs

e AE with MFCC —  AEMECC

e AE with BNF —  AEgNE

e CAE with MFCC — CAEpmrcc

e CAE with BNF —  CAEgpnF
Conclusion

e Keyword templates are the only labelled data.

e Extractor and feature combinations can lead to im-
proved KWS performance.

e CAEgNF yielded the best performance among the
evaluated feature types.

o CAEgnE extractor uses labelled data in well-
resourced out-of-domain languages to leverage ex-
tremely sparse in-domain data.

e CAEMFcc yields comparable performance in the
absence of a multilingual BNF extractor.

e Future work includes integrating this model into a
larger keyword spotting framework and expanding
it to include more under-resourced languages.



