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Abstract—The ability to study animal behaviour is important
in many fields of science, including behavioural ecology, con-
servation and precision farming. These studies typically employ
biotelemetry tags attached to animals to collect raw sensor
data from tri-axial accelerometers. The lifespan of such tags is
constrained by their power usage and is often a limiting factor
when performing behavioural studies for extended periods of
time. This study considers the effect on power requirements when
performing statistical behaviour classification on the tag itself, as
opposed to at a later stage, after raw data transmission. Such
animal-borne classification is particularly attractive when live
behavioural updates are required. Experiments using specially-
designed low-power biotelemetry sensors demonstrated a 27-
fold reduction in energy consumption when classification was
performed on the tag, as opposed to conventional post-processing
techniques. By performing on-board statistical behaviour classi-
fication, the power requirements are drastically reduced, thereby
prolonging the lifespan of the tag.

Keywords—Automatic animal behavioural classification, Ac-
celerometer, Low power, Biotelemetry sensor.

I. INTRODUCTION

The study of animal behaviour has greatly advanced
through the use of biotelemetry tags which include sensors
such as Global Position System (GPS) trackers, tri-axial ac-
celerometers, temperature sensors, pressure sensors and mag-
netometers [1]. These devices are typically attached to the
animal of interest in order to periodically log or transmit raw
sensor values. In the former case, the tag must be recovered to
retrieve the data. The collected data is typically analysed using
statistical or other computational techniques to achieve a com-
mon goal of many studies, namely the automatic classification
of the animal’s behaviour. Several studies have considered the
determination of animal behaviour from acceleration measure-
ments. For example, statistical classifiers have been shown to
achieve good accuracies for badger [2], cattle [3–6], cheetah
[7] and elephant [8].

Despite these advances, a major bottleneck in biotelemetry
remains the fairly short lifespan of the tag due to the limited
battery power. This can be a major constraint when applying
automatic behaviour monitoring to real-world problems. Hence
a reduction in the tag’s power requirement has the direct and
important benefit of extending its lifespan.
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In this work, we consider the effect on these power require-
ments of performing statistical classification on the tag itself,
instead of at a remote location after raw data transmission
or retrieval, as is currently done. This has recently been
contemplated but not tested in a study concerning dairy cows
[3]. We perform a set of detailed physical measurements of
the energy consumption of a specially-designed low-power
biotelemetry tag when configured to transmit raw acceleration
measurements, and when configured to perform statistical
behaviour classification and transmit the classification result.
We will show that, although the computations required for
classification are computationally expensive, this additional
expenditure is more than compensated for by the more compact
data which are subsequently transmitted, thus leading to a
lower energy consumption and extended battery lifetime.

II. METHODS

A. Animal-borne Behaviour Classification System

Animal-borne behaviour classification refers to the embed-
ded hardware implementation of conventional off-line auto-
matic behaviour classification algorithms. These algorithms are
based on established machine learning techniques, which have
recently been applied to the automatic behaviour classification
of tri-axial accelerometer data for various taxa. Some common
off-line techniques include decision trees [2,3,6], discriminant
function analysis [8], hidden-Markov models [7], k-nearest
neighbours [2], quadratic discriminant analysis [4] and support
vector machines [5,7]. We consider the automatic classification
of tri-axial accelerometer data into three behavioural classes
using linear discriminant analysis (LDA). We extract the
maximum, minimum, mean and variance for each of the three
axes, resulting in 12 input features from frames of 256 sampled
accelerometer measurements. Therefore, LDA involves a 12 by
3 matrix multiplication, which in our implementation requires
36 multiplications and 36 additions. In our case the classifier
was implemented and field tested using biotelemetry tags
attached to African rhinoceros (Ceratotherium simum and
Diceros bicornis) [9], but this specific application is irrelevant
to the analysis of energy consumption considered here.

B. Hardware

Our biotelemetry tags, shown in Fig. 1, are powered by
a 3.7V (1800mAh) lithium-ion battery. The tags were op-
timized for low-power consumption and employ a low-power



mixed signal microcontroller, a GPS receiver, two ferro-electric
non-volatile RAM (FRAM) storage modules (2 Mb each) and a
tri-axial accelerometer. A low-power sub-1GHz RF transceiver
allows wireless data communication at 433MHz with an
output power of 10 dBm and a bit-rate of 1.2 kBaud. Field
tests indicate that a communication range of roughly 1 km
can be expected with this configuration. Each tag measures
100mm x 60mm x 12mm and weighs 32 g.

Table I lists the major power-consuming components used
in the biotelemetry tags. Both the active mode and sleep mode
current consumptions are shown.

TABLE I: Major power-consuming components of the
biotelemetry tags, together with their active and sleep mode
current consumptions.

Description Part
Number

Active Mode Current Sleep
Mode
Current

Microcontroller MSP430-
FR5739

1.628mA @ 20MHz 0.32uA

Tri-axial accelerometer ADXL345 170uA @ 100Hz 0.1uA
GPS GNS602 25mA @ Acquisition 7uA
FRAM non-volatile storage FM25V20 1.4mA @ 40MHz 3uA
Sub-1GHz RF-transceiver CC1101 29.1mA @ 433MHz

@ 10dBm
0.2uA

C. Experimental setup

The hardware described in previous section was configured
in two ways, as shown in Table II. Configuration 1 involves the
transmission of the raw data, while Configuration 2 involves
the transmission of the classification result. In each case, the
power consumption was measured.

The biotelemetry tags were configured to sample the tri-
axial accelerometer at a rate of 40Hz. Frames consisting of
256 sequential tri-axial samples were gathered. The raw sam-
ples were either transmitted, or were passed to the classifier,
whose decision was transmitted. The current consumption was
measured as a function of time so that the energy requirements
of each activity could be accurately identified and quantified.

GPS Accelerometer

Microcontroller

RF Module

FRAM Modules

(below RF Module)

Fig. 1: Assembled biotelemetry tag. The tag measures 100mm
x 60mm x 12mm and weighs 32 g.

TABLE II: Two hardware configurations used in power mea-
surements.

Configuration Description

1 Sample and transmit raw accelerometer data.
2 Sample accelerometer data, classify behaviour and transmit the

classification result.

III. RESULTS

A. Configuration 1: Sample and transmit raw accelerometer
data.

At a sample rate of 40Hz, the 256 tri-axial accelerometer
measurements are captured in 6.4 s. When the values are
written to the FRAM, the current consumption is constant at
1.69mA, shown in Fig. 2. After sampling and storing the 256
tri-axial accelerometer measurements, the data is transmitted
to a receiver station for further processing. Fig. 2 shows that, in
addition to the 6.4 s required to sample and store the raw data,
a further 10.43 s is required to transmit the raw information.
During transmission the current consumption is 32.56mA.

B. Configuration 2: Sample accelerometer data, classify be-
haviour and transmit the classification result.

As before, 256 tri-axial accelerometer measurements are
sampled and temporarily stored. This sequence of acceleration
measurements is then processed by the on-board classifier
to yield the classification result. The classification result is
encoded as a single byte whose value indicates the classified
behaviour. Fig. 3 shows that, after the 6.4 s needed to acquire
the raw data, the microcontroller spends 73.76ms classify-
ing and storing the result, while consuming 2.08mA. The
classification result is subsequently transmitted, requiring a
further 55.4ms. As before, the current consumption during
transmission is 32.56mA. Behavioural updates are therefore
available every 6.53 s.

IV. DISCUSSION

Table III summarises the measurements obtained from the
two experimental configurations. The table indicates the aver-
age current consumption per frame, Joules of energy required,
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Fig. 2: Current consumption as a function of time for Config-
uration 1 (sample and transmit raw data).
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Fig. 3: Current consumption as a function of time for Config-
uration 2 (sample, classify and transmit decision).

and the time required to process one frame of 256 successive
acceleration measurements.

Analysing Table III shows that behavioural updates can be
obtained while consuming 27 times less power per frame when
on-animal classification is performed.

TABLE III: Summary of results.

Configuration Average current Joules per Period per
consumption (mA) frame frame (s)

1 20.821 1.156378 16.83
2 1.956 0.042150 6.53

A. Reduced update frequency

Although Configurations 1 and 2 can produce raw or clas-
sified updates every 16.83 s or 6.53 s respectively, behavioural
updates are in practice typically required less frequently. In this
case, biotelemetry tags enter into a low-power sleep mode (in
our case consuming 6.065 uA) between updates. This further
increases the lifespan of the tags. Fig. 4 contrasts the extrapo-
lated lifespan of Configurations 1 and 2 for the same range of
data acquisition intervals. Note that spontaneous deterioration
of the battery due to, for example, internal discharge has
not been taken into account. Analysing Fig. 4 shows that,
when live behavioural update are transmitted every 5 minutes,
the tags have an expected battery life of 4.75 years. This
is in contrast with a lifespan of 71 days when raw data is
transmitted.

V. SUMMARY AND CONCLUSION

We have considered the implications on power require-
ments of performing statistical classification of tri-axial ac-
celerometer measurements into behavioural classes directly on
biotelemetry tags as opposed to at a receiver station after
wireless data transmission. A LDA-based statistical classifier
implemented on a low-power biotelemetry tag achieved a 27-
fold reduction in power consumption when compared with a
system in which the raw acceleration data was transmitted. We
conclude that animal-borne behaviour classification is advan-
tageous from a power consumption standpoint. This applies
especially to applications where the transmission of data can

0 10 20 30 40 50 60
0

5

10

15

20

25

Data acquisition interval (minutes)

L
if
es
p
a
n
(y
ea
rs
)

Configuration 1
Configuration 2

Fig. 4: Theoretical lifespan of the tags for various data acqui-
sition intervals. Calculations are based on a 3.7V (1800mAh)
lithium-ion battery.

not be avoided because, for example, real-time updates are es-
sential. The power savings afforded by on-animal classification
can enable long-term real-time behavioural studies. It may also
assist in real-world applications such as nature conservation,
precision farming as well as veterinary and epidemiological
research.
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