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Abstract—We investigate the application of agglomerative
clustering to short segments of speech signals. The successful
direct clustering of such sub-word speech segments has direct
application in the automatic derivation of pronunciation variants
for use in automatic speech recognition (ASR) systems. We
consider several configurations of hierarchical agglomerative
clustering in order to determine the best configuration for the
speech clustering task. Similarity between segments is computed
by dynamic time warping (DTW), within which the application
of Euclidean and city-block distance measures were evaluated.
The effect of path length normalisation of the DTW score is
considered, and finally the application of three different between-
cluster distance measures is compared. Experiments are carried
out on a subset of the phone segments present in the TIMIT
database. We find that the city-block distance in conjunction with
a normalised DTW score and the Ward cluster linkage method
lead to best results.

I. INTRODUCTION

The objective of this paper is to investigate the parameters
that influence the unsupervised clustering of short segments of
speech data. Clustering spans many fields of pattern recogni-
tion, such as image processing, speech processing and docu-
ment recognition. We focus on a speech processing application
in which short segments of audio taken from a corpus of
connected speech must automatically be grouped into different
clusters in an effort to group similar sounds. In order to allow
controlled experimentation and the evaluation of clustering
results, the segments we consider are phone units taken from
the TIMIT speech corpus.

The unsupervised clustering of sub-word speech sounds
has several applications in speech processing. One of these
is the automatic generation of pronunciations for use in an
automatic speech recognition (ASR) system. This application
was considered in [1], where the authors bootstrap a system
using grapheme-based subword models. Later work in which
this restriction was removed indicated that careful attention
to the clustering of audio segments would be required [2]. In
this paper, we address this issue. Other applications of the type
of clustering that we consider include automatic keyword dis-
covery [3] in which frequently recurring words or phrases are
detected in untranscribed audio. Mareuil et al [4] and Imperl et
al [5] clustered speech segments from multiple languages for
applications in multilingual speech recognition and language
identification respectively. Mak and Barnard [6] cluster speech
segments using agglomerative hierarchical clustering (AHC) in
an approach that is similar to ours. They however use Gaussian

probability density functions and the Bhattacharyya distance to
find the inter-cluster similarity. In contrast to the work covered
in [2], we focus exclusively on the clustering problem and
experiment with several configurations in order to determine
how the parameters affect the performance of the algorithm.
Neel [7] performs cluster analysis in various ways on TIMIT
speech data. In this work however the number of clusters was
fixed. We attempt unsupervised clustering in which the data
are clustered purely on the basis of the feature representation.

II. AGGLOMERATIVE HIERARCHICAL CLUSTERING

Cluster analysis is the process of discovering the natural
groupings of a set of patterns, points or objects [8], [9],
[10], [11]. The analysis itself is based on the hypothesis
that similarity between related points in the data set should
be high while similarity between different points should be
low. The points are then grouped according to this similarity.
Agglomerative hierarchical clustering (AHC) is one approach
to performing the grouping task.

AHC is a bottom-up method that merges pairs of clusters
according to a certain similarity measure. Initially each data
point (speech segment) forms a singleton cluster. At this stage
the number of clusters is equal to the number of speech
segments. Subsequently clusters are merged in a pairwise
fashion until a single cluster remains. This procedure generates
a tree-like hierarchical grouping known as a dendrogram, as
illustrated in Figure 1.

In order to determine the similarity between two clusters,
the similarity between individual members of the clusters must
also be computed. These members are in our case segments of
speech, and their similarity will be computed using dynamic
time warping (DTW), which will be described in Section
II-A. Furthermore, once the similarity between individual
cluster members is known, the similarity between the clusters
themselves can be computed in a variety of ways. Some of
these linkage methods will be described in Section II-B.

A. Dynamic time warping

Dynamic time warping (DTW) is an algorithm that cal-
culates the similarity between two sequences of generally
unequal length. DTW was once the basis of template-based
isolated-word speech recognition, but has been superseded by
statistical techniques such as hidden Markov models (HMMs)
[12], [13]. For our application, in which we would like
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Figure 1. An example of agglomerative hierarchical clustering (AHC) and
the associated dendrogram.

to assess the similarity between two specific but otherwise
arbitrary segments of speech, it is well-suited.

Let the two speech segments in question be S1(α) and
S2(ω), where α = 1, 2, . . ., A and ω = 1, 2, . . ., Ω. S1 =
{X1, X2 . . ., XA}, S2 = {Y1, Y2 . . ., YΩ} and Xα or Yω are
the T-dimensional feature vectors. Now consider a Ω×A local
distance matrix, D, whose entries are the distances between all
possible pairs of feature vectors from the two segments. The
distance measures can be chosen to suit the application, and
we will consider the Euclidean and the city-block distances in
our evaluation. The Euclidean distance is given by:

d(Xα, Yω) =

√√√√ T∑
i=1

(xαi − yωi)2 (1)

while the city-block entry is expressed mathematically as:

d(Xα, Yω) =

T∑
i=1

|xαi − yωi| (2)

From the matrix D, the best alignment between the se-
quences S1(α) and S2(ω) can be computed recursively by the
principle of dynamic programming [13]. The score associated
with this best alignment can then be taken as a measure
of similarity between the two sequences. By dividing this
score by the total length of the alignment path, a measure
of the average per-frame similarity can be obtained. Both
normalised and unnormalised versions of the DTW score will
be considered in our experimental evaluation.

B. Linkage methods

Dynamic time warping allows the similarity between two
individual speech segments to be evaluated. However, during
clustering, the similarity between two clusters of segments
must also be computed. There are several strategies to compute
this inter-cluster similarity, and we have chosen three of
these linkage methods for experimental evaluation: average-
link, complete-link and Ward-link [10], [11]. We will use the
following notation for the description of the linkage methods:

• U and V are two clusters whose similarity must be
measured.

• K and L are the number of elements in U and V
respectively.

• When cluster U contains segment ci, we denote this by
ci ∈ U .

• d(ci, cj) is the distance between two segments, as calcu-
lated by DTW.

The average-link uses the average distance computed be-
tween all possible pairs of observations drawn from U and
V . The criterion joins clusters with small variances and is
less influenced by outliers than many other methods. It can
mathematically be presented as:

Simave(U, V ) =
1

K × L
∑
ci∈U

∑
cj∈V

d(ci, cj) (3)

The complete-link criterion considers the points in each
cluster that are furthest apart. This can make it vulnerable
to outliers as such anomalous points will often be the most
distant. However it has the advantage of preferring compact
clusters. It is calculated as:

Simcomp(U, V ) = max
ci∈U,cj∈V

d(ci, cj) (4)

The Ward-link method considers the increase in the total
intra-cluster sum-of-squares that results when two clusters are
merged. This intra-cluster sum is defined as the sum of squares
of the distances between all members of the cluster and its
centroid. This method tends to join clusters with a small
number of observations. It is mathematically presented as:

Simward =
‖cU − cV ‖2

(1/K + 1/L)
(5)

where ‖cU − cV ‖2 is the distance between the centroids, cU
and cV , of clusters U and V respectively.

III. CLUSTER EVALUATION

In general, the clustering process will make errors, for
example by placing two dissimilar segments in the same
cluster, or by assigning similar segments to different clusters.
Ideally, however, each cluster contains segments from only
one phone, and all the segments of a particular phone belong
to the same cluster. In order to to evaluate the success of the
clustering process, we require measures that will indicate the
extent to which these competing goals are achieved. Several
methods have been proposed to accomplish this [14] and of
these we have chosen two for our experimental evaluation. Let
us consider our data to consist of N segments that belong to
J different classes. Ideally1 the number of clusters K, also
referred to as the cardinality, should equal the number of
classes. Now assume the following notation:
• G = {G1, G2, ..., GK} where G is the set of clusters

and Gk is cluster k that contains speech segments.

1This has the disadvantage of considering alternative groupings of acousti-
cally similar clusters as errorful. We leave the analysis of this effect to future
work, in which ASR evaluations are incorporated.



• C = {C1, C2, ..., CJ} where C is the set of classes and
Cj is a set of phones with the same class.

• maxj |Gk ∩Cj | represents the number of occurrences of
the most frequent phone in cluster Gk.

A. Normalised mutual information

The normalised mutual information (NMI) is based on the
mutual information between classes and clusters [9],[14]. The
mutual information is denoted by I(G,C) and is given by:

I(G,C) =
∑
Gk∈G

∑
Cj∈C

P (Gk ∩ Cj) log
P (Gk ∩ Cj)
P (Gk)P (Cj)

(6)

where P (Gk), P (Cj) and P (Gk ∩ Cj) are the probabilities
of a speech segment occurring in cluster Gk, in class Cj and
in both cluster Gk and class Cj , respectively.

The mutual information measure, I(G,C), does not pe-
nalise cardinalities. To make it sensitive to the varying number
of clusters, it can be normalised by a factor based on the
entropy of both clusters and classes. This normalising factor is
given by: 1/2[H(G)+H(C)], where H(.) denotes the entropy.
H(G) measures cluster cohesiveness [15] and is given by:

H(G) = −
∑
Gk∈G

P (Gk) logP (Gk) (7)

H(C) is a measure of class cohesiveness and is calculated
similarly. Normalising I(G,C) in this way makes it respond
to cardinality, because entropy tends to increase with the num-
ber of clusters. The normalised mutual information criterion
is therefore given by:

NMI(G,C) =
I(G,C)

1/2[H(G) +H(C)]
(8)

The NMI is always a number between 0 and 1 where 1 denotes
purely clustered data.

B. The F-measure

The F-measure is based on recall and precision for each
cluster with respect to each class in the data set [16], [10]. The
precision and recall quantities are based on: (1) a true positive
decision (TP) where two similar segments are assigned to
the same cluster, (2) a true negative decision (TN) in which
two dissimilar segments are assigned to two different clusters.
The sum of TP and TN are known as the correct decisions.
In addition, a false positive (FP) error occurs when two
dissimilar segments are assigned to the same cluster. A false
negative (FN) error, on the other hand, occurs when two
similar segments are placed into different clusters. Precision,
Prc, is given by:

Prc =
TP

TP + FP
(9)

where TP + FP =
∑K
i

(|Gi|
2

)
, TP =

∑K
i

(
Qi

2

)
+ 1 and

Qi = maxi |Gi∩Cj |. Equation 9 is the ratio of segments from
the same class in the particular cluster to the total number of
segments in that cluster.

Recall is given by:

Rec =
TP

TP + FN
(10)

where FN + TN =
(
N
2

)
− (TP + FP ),

FN =
∑J
i

(
Vi

2

)
− TP , Vi = |Ci ∩Gj | and |Ci ∩Gj | is the

number of segments of one category in cluster j.
The recall expression is the ratio of segments from the

same class in the particular cluster to the total number of all
segments that belong to the same class in all clusters. The
F-measure is quantified as:

F =
2× Prc×Rec
Prc+Rec

(11)

which can be further refined by introducing a mechanism that
allows more weight to be assigned to recall or to precision.
Let β be a constant and rewrite the F-measure as:

Fβ =
(β2 + 1)× Prc×Rec
β2 × Prc+Rec

(12)

We select β > 1 to give more weight to recall . When β = 1
Equation 12 simplifies to Equation 11.

IV. DATA PREPARATION

Our experimental evaluation is based on speech data taken
from the TIMIT speech corpus [17]. The speech is param-
eterised as a series of feature vectors composed of Mel
frequency cepstral coefficient (MFCCs). MFCC’s are chosen
on the basis of their robustness and frequent usage in well
performing speech processing systems. In particular, cepstral
mean normalisation can be applied to minimise speaker and
channel effects.

Due to the large number of inter-segment similarities that
must be calculated during clustering, we have based our
experiments on a subset of the TIMIT data. A total of 100
speakers were chosen from the seven dialects present in the
corpus. Speaker selection was random, but an even distribution
across the dialect regions and an equal male/female balance
within each region were ensured. For these 100 speakers,
the five phonetically compact SX sentences were considered,
bringing the total number of utterances in our dataset set to
500.

From each utterance, all occurrences of the phones listed in
Table I were extracted for experimentation. The table shows
that two sets of data were chosen for experimentation: a
short set (set 1) and a long set (set 2 ), and that the short
set is a subset of the long set. The reason for including
two sets of data was to allow contrastive experimentation
when investigating the effect of path length normalisation on
clustering performance. In particular, the short set was chosen
in initial experiments but was found to be rather homogeneous,
consisting exclusively of vowels and of segments with fairly
similar lengths. The long set, on the other hand, is more diverse
since it includes semivowels, and a greater variety of segment
lengths, as illustrated in Figure 2.



Phone set Segments
Set 1 (short set) aa, ae, ah, eh, ih, iy, uh

Set 2 (long set) aa, ae, ah, eh, ih, iy, uh, er,
ey, ix, aw, axr, l, oy, r, y

Table I
TIMIT DATA USED FOR EXPERIMENTATION.

Figure 2. Average durations of the segments in sets 1 and 2.

V. EXPERIMENTAL SETUP

The dynamic time warping distance measures that were
considered (Euclidean and city-block) as described in Sec-
tion II-A were implemented in C++. The linkage methods
and hierarchical clustering process detailed in Section II were
implemented using the Octave statistical toolbox. Various
configurations of the clustering process were applied to the
datasets described in Table I with the specific aim of answering
the following questions:

1) Does the Euclidean or the city-block distance measure
yield better clustering when implemented within the
DTW similarity measure?

2) Should the DTW distance be normalised with the path
length or not?

3) Which linkage method gives best clustering results:
average, complete or Ward?

In each set of experiments, the clustering threshold was varied
in order to establish the effect of the number of clusters on
performance.

VI. EXPERIMENTAL RESULTS

A. City-block vs Euclidean distance in DTW

First we investigate the effect on clustering performance of
varying the method used to compute the the distance between
individual feature vectors as part of the DTW alignment. The
NMI and the F-measure cluster evaluation metrics are used to
assess the quality of every set of clustering results. Figure 3
shows these results for the smaller dataset (set 1). The Ward
linkage method was employed throughout as this was found
to lead to better results than the other linkage methods, as will
be demonstrated later.

Figure 3 shows that optimal performance is achieved for
between approximately 15 and 40 clusters, and that the city-
block distance generally outperforms the Euclidean distance
in this range.

Figure 3. Clustering performance in terms of NMI and F-measure for the
city-block and Euclidean DTW distances for data set 1.

B. Normalised path length in DTW

We have already observed in Figure 2 that the phone
segments vary in length. The DTW procedure results in the
best alignment between two speech segments of arbitrary
length. Since the DTW score increases monotonically along
the alignment path, it is in principle possible that the alignment
of a long and a much shorter segment lead to a better
score than the alignment of two longer segments, even when
the former are acoustically dissimilar and the latter similar.
In order to account for this, the alignment score can be
normalised by its length, leading to a per-frame rather than an
overall score. Figure 4 shows the effect of this normalisation
on the NMI and the F-measure for city-block-based DTW on
the smaller dataset (set 1), while Figure 5 shows the same
experiment for the larger dataset (set 2).

Figure 4. Comparison of normalised and unnormalised city-block based
DTW for data set 1.

For the smaller dataset (set 1), path normalisation leads
to deteriorated performance, while the reverse is true for the
larger dataset (set 2). We ascribe this difference to the relative
homogeneity of set 1. Since the phone lengths and also the
sounds are fairly similar in this set (all vowels), the scenario
in which a very short and a very long segment that are
acoustically quite different lead to a better overall alignment
score is rare. Since the length of the segment itself includes
discriminatory value, its effect on the alignment scores can
be beneficial, and its removal by normalisation detrimental.
However, when the lengths of the segments, as well as the
sounds themselves, are more diverse (set 2 contains both



Figure 5. Comparison of normalised and unnormalised city-block based
DTW for data set 2.

vowels and semivowels) the benefits of normalisation begin
to dominate.

C. Evaluation of the linkage methods

Using the city block distance in conjunction with the
unnormalised DTW score for the shorter dataset (set 1), as well
as the city block distance in conjunction with the normalised
DTW score for the longer dataset (set 2), the effect of varying
the linkage method used to determine inter-cluster similarity
could be studied. The performance for the respective cases in
terms of the F-measure are shown in Figures 6 and 7.

Figure 6. Evaluation of linkage methods for data set 1.

We observe that, for the smaller dataset (set 1), use of the
Ward linkage method leads to best performance when the
number of clusters is small. The peaks in performance for
the average-link and complete-link methods occur when the
number of clusters is larger, and are lower. For the longer
dataset (set 2), a similar picture emerges.

D. Number of clusters

From Table I it is evident that the ’true’ number of clusters
in the data is 7 and 16 for set 1 and set 2 respectively. However,
the peaks in Figures 6 and 7 correspond to approximately
15 and 40 clusters respectively. It appears therefore that the
overall quality of the clusters is better when it is allowed to
exceed the ’true’ number of clusters by a factor of between 2
and 3.

Figure 7. Evaluation of linkage methods for data set 2.

VII. DISCUSSION AND CONCLUSIONS

We have presented a comparative evaluation of several
configurations of agglomerative hierarchical clustering applied
to the grouping of subword speech sounds. Due to the high
computational cost of the experiments, a subset of the TIMIT
data was used. Our experiments showed that the best clusters
were obtained when calculating the DTW score using the city
block distance and normalising it with respect to the alignment
path length. Furthermore, the Ward inter-cluster distance let to
better clusters than the average and complete linkage methods.

Although the number of clusters leading to best performance
was found to exceed the actual number of classes in the data
by a factor of between 2 and 3, this may be due to contextual
effects. As experience in automatic speech recognition has
shown, co-articulation may cause the same phone to differ
acoustically from other instances due to differing left and/or
right contexts. Similar variability may be introduced by dif-
ferences in speaker dialect or gender. These factors could also
limit the achievable accuracy of the clustering process itself.
In future work, this aspect will be more carefully investigated.

The appreciable differences in the results obtained for the
smaller and the larger datasets also indicate that experiments
on the full set of phones are requited in order to obtain defini-
tive answers to our research questions. Hence the optimisation
and parallelisation of the clustering algorithms will also form
part of our ongoing work.
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