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Abstract

A singing transcription system transforming acoustic inpu
into midi note sequences is presented. Notes are indiidual
modeled by hidden Markov models (HMM'’s) using untuned
pitch, delta and voicing coefficients as feature vectorficieht
use of a limited amount of training data is achieved by means
of state tying. Explicit transition models are introducedet-
ter identify boundaries between notes that are otherwiseyo
modeled, and a non-repetitive grammar introduced to reduce
insertions. The system is found to be able to transcribe sung
passages with 88.5% accuracy.

1. Introduction

Transcription can be described as the act of translating fro
one medium to another. Transcription of a musical perfogaan
into a text representation is accomplished by means of afset o
well defined symbols, designed to capture various chaiaeter
tics and components of the performance. This translatitm in
standard music notatiois referred to as ausical score Cur-
rently this process requires a skilled music professiondlia
done by hand.

The integration of computers and music, in terms of edu-
cation, can be divided into four disciplines: teaching of-mu
sic fundamentals, music performance evaluation, musi¢ ana
ysis and music composition. An overview of these fields can
be found in [1]. Although not educational in nature itseli; a
tomatic transcription of music can be used as a first stage to
a number of educational applications. When applied to mono-
phonic singing, automatic transcription creates oppdtigsifor
applications like melody database retrieval of music akso r
ferred to as query-by-humming (QBH) systems, sight-siggin
tutors, structured audio [2] and various singing analygis s
tems.

Although the monophonic transcription problem for spe-
cific instruments was largely solved approximately 20 years
[3], the overall flexibility of the human voice as an instrurhe
expands the problem sufficiently to sustain current reseiarc
terest and contributions. Especially the variance in terdur-
ing phonetically unrestricted singing requires that bothttme
and frequency domain be used for note onset/offset cues. As
noted byViitaniemi et al[4] andClarisse et a[5], segmentation
and quantization of the continuous pitch track into a seqeien
of notes is still an unsolved area of research. Although tire ¢
rently larger QBH research field has provided much insigfat in
the processing of singing signals, the need for a note leggk-r
resentation is of greater importance in the transcriptimmain,
since it corresponds exactly to the output level of repriztiem.

The observation therefore made 8iiih et al[6] regarding the
neglect of notes as individual musicological units in QBl-sy
tems, is of even greater significance to the singing traptson
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Figure 1:Schematic diagram of a sight-singing tutor.

community.

The work presented in this paper, is closely related to the
system proposed in [7], whereby notes are individually mod-
eled within a statistical framework. Our system makes use of
HTK [8], an HMM toolkit designed for speech recognition ap-
plications. Furthermore, our system is intended eventuall
be used as a sight-singing tutor platform, and is therefote n
refined to be a state-of-the-art transcription system. We ha
therefore not applied pitch tuning and extensive duratiaa-m
elling. A schematic representation of a sight-singing rtstcs-
tem can be seen in Figure 1. With a sight-singing tutor system
the user is asked to sing a selected vocal exercise. Thisisger
is then used by the system as a transcription reference and is
compared with the users audio input transcription to detegm
how accurately the user has sung. The user is then givenl visua
feedback of the singing peformance.

The structure of the paper is as follows: Section 2 gives a
general overview of the proposed system and its various cemp
nents, followed by details on how the dataset was consttite
Section 3. Section 4 describes the acoustic modelling @sot
and explains the choice of feature vectors, HMM model topol-
ogy and grammar. The evaluation of our system is presented in
Section 5. The conclusions reached and further recommenda-
tions regarding our system are given in Section 6 and corclud
the paper.

2. System Overview

Most statistical singing transcription systems are buihg the
modules shown in Figure 2. Audio input is low-pass filtered to
reduce high-frequency noise and harmonics. The filterathbig

is transformed into an intermediate-level representatibith
captures the most essential characteristics and is rdfesras
signal features These vectors are used to adjust the statisti-
cal models, HMM's in our case, to represent the events being



modeled. The one-to-one correspondence between thdistatis
cal models and the identity of the notes makes the trangamipt
process conceptually simple. The recognition and segmenta
tion process proceeds by finding the most likely event sexpien
given a network of models, that would account for the feaure
being observed. Lastly, the note sequence can be adjusted by
evaluating each note in terms of the overall sequence within
which it occurs, its musicological context and by means @éno
transition probabilities based on a major-minor scale kay. p
Note duration restrictions can also be applied during thizse

to absorb clear insertions. In some systems such sequential
straints are integrated into the preceding recognitiogestdhe
final translation of a note sequence to sheet music requires d
ration quantization and interpretation of the sequencerims$

of accepted music notation.
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Figure 2: Schematic representation of a singing transcription
system.

3. Corpus

Due to the lack of recordings of suitable monophonic singing
with which to train statistical models, a new dataset was-com
piled. In order to maximize the limited amount of data the cor
pus range has been limited to female sopranos only. Theadatas
contains 10671 notes from 15 female soprano voices spanning
32 semitones (from G3 to D6#). The UNISA grade llI, IV and
V prescribed list of technical singing exercises was used as
basis for our corpus. Each of the 15 subjects was required to
sing an average of 50 such exercises during a recordinggsessi
Figure 3 shows a typical example.
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Figure 3:Unisa vocal exercise example.

Table 1 shows how the dataset was divided into training
and testing data. TheroTools LE 7.1recording software and
aRhode NT2000 Studio Condenser Microphamsge used. All

Table 1:Dataset partition information

| Descriptor | Training Set]| Testing Set]
Number of singers 12 3
Number of exercises 624 176

recordings were stored using 16-bit linear encoding at & sam
pling rate of 44.1kHz. Figure 4 displays the distributionadif
the notes in the dataset.
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Figure 4:Distribution of notes in the dataset.
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Figure 5: Histograms of automatically estimated pitch values
for each note in the training set. The plots show the number of
pitch estimates calculated for each note model. In the g@ph
the right the histogram bin maximum has been clipped to bette
show the number of octave and fifth error intervals. Each bin
represents 37.5 cents % semitones. The bin range spans the
midi note numbers 21 - 96.

4. Acoustic Modelling

In order to process the dynamic nature of the human voice, a
flexible approach is needed. As can be seen in Figure 5, the
various notes in the training dataset display a notable amou
of variance in terms of estimated pitch frequency (pitcinesst

tion will be descirbed in Section 4.1.1). The variabilityndae
attributed to singing errors, pitch estimation errors aiahgi-

tion instability regions, but also the inherent stochast&nent



of music. Ryynanen et al7] describes note events as being
"musicological units having dynamic natureHidden Markov
models are well suited to this type of problem and are oftexlus
for time series modelling. In particular, HMM’s can be used t
find the optimal corresponding ‘hidden’ (note) event segaen
given some observed characteristics regarding the melagly (
pitch) [4].

The various initialization, training and testing stepsoass
ated with most HMM based recognition systems, including the
proposed system, are outlined in Figure 6. Firstly, evetg se-
qguence within the dataset has to be manually transcribed. Th
labelling process can be very time consuming, as some note se
guences may be incorrect or not suitable for training. A aidd
Markov model X is defined in terms of the matrix of transi-
tion probabilitiesA, the observation probability distributiorts
and the initial state distribution: A = (A, B, 7). The model
is initialized and then trained by locally optimizing(O|\),
the probability of observing the sequence of feature veair
given a certain model. This iterative model training pro-
cess is known as Baum Welch re-estimation [9, 10]. Once the
HMM parameters have been trained, the recognition of nates s
guences can be determined, using the Viterbi algorithmi[A]1,
which seeks to find the single state sequefg¢éhat maximizes
the probability P(Q, O|)\), given an observation sequenCe
The most likely note model sequence can then easily be found
from the best state sequence. To evaluate the system, each ge
erated note sequence is compared to its reference tratiserip
and an accuracy is calculated.
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Figure 6:Acoustic modelling and evaluation steps.

4.1. FeatureVectors

Unlike speech recognition features that are focused mainly
pronunciation and are largely pitch independent, singiag-t
scription must focus on the pitch and be pronunciation iedep
dent. Our system uses pitch, with pitch-delta and voicireffco
cients added to assist in note boundary detection. Givénhba
technical exercises of the dataset consist mainly of siegkgo
phrases, the energy envelope itself is not helpful for theaex
tion of note event features. Many systems use adaptive pitch
tuning [4, 7, 13], but since the system will be expanded in the
future to accommodate user feedback, absolute pitch fregue
is used instead.

4.1.1. The Yin pitch estimator

We use theYin algorithm as proposed in [14], as our primary
pitch estimator. This algorithm has been found to be effecti
in other music transcription systems [4, 7].

For a given discrete time-domain signal sampled at a
frequencyfs, the Yin algorithm outputs the fundamental fre-
quencyf, at timet together with a voicing parametey. The
algorithm is based on a squared difference funcdign) which
is calculated over a window &% samples and is similar to the
AMDF function [15]:

t+W

di(r) = (;

Jj=t

— @jtr)?

Herer is an integer lag variable such that [0, V). The
difference function is normalized by dividing by the cuntivia
mean of the function over shorter lag periods:

’ 1
di(7) = { di(7)/[(2)

. This eliminates the need to define a lower limit fowithin
d.(1), since the cumulative mean function seeks to maximize
the difference function for small lag periods below the Ipitc
period range of interest. The Yin algorithm finds the locahimi
mum with the smallest lag peried, and then interpolates over

the interval{r' — 1,7 + 1} . The minimum of the interpola-
tion polynomial is chosen as,. The pitch period can then be
converted to an absolute frequency usifig) = fs/7,. The

voicing parametew; is given byd; (7p), which is the magnitude

of the Yin function atr,. This parameter is a function of the
strength of the correlation at,, which is related to the overall
degree of periodicity in the signal within the current frariie
enhance pitch continuity and reject clear spurious peahy, o
pitch values within the range of 27.5 — 2093.0 Hz (A0 — C7) are
accepted as valid, with invalid values set to the previodisl va
pitch value. The pitch track is smoothed with a 10th order me-
dian filter.

T=0
otherwise

=1 d:(9)]
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Figure 7:Typical pitch,voicing and delta features.



4.1.2. Delta coefficients

The time differentials of the pitch values, referred to akade
coefficients, are calculated at timeusing the regression for-
mula [8, p.63] given by:

Z((;):l 9(f0t+9 - fOtfe)
255 02
The window width paramete®), is set to 2 in our experiments.

Figure 7 illustrates a typical pitch track and its associatsic-
ing and delta-pitch values.

dfoty =

4.2. Note event modelling

Due to the similarities between singing transcription greesh
recognition, it seems reasonable to incorporate some ofd¢lie
researched methods and tools that the latter field has to offe
For this reason the HTK speech recognition toolkit [8] hasrbe
used for most of our training and recognition procedurese Th
subjective and unpredictable nature of the human voice fiall

a flexible approach, whereby the inherent variability ing&ig

can be modeled and weighted according to probabilistic mea-
sures.

Each semitone, corresponding to midi numbers55...86
is modeled with a single-Gaussian non-skipping left-ggi
HMM with the number of states ranging between 1 and 4. As
pointed out byRyynanen et a[7], the various states in the
HMM models can be seen to represent the different stages in
a note event. Initialization of models is achieved by corimuut
and assigning a single global training set mean and varignce
all models. Apart from the note onset uncertainty, the itams
regions between notes tend to degrade the overall modelting
curacy of notes since the transient pitch is context depgnde
and can vary greatly depending on the note interval and pronu
ciation. To decrease this initial note model variance, sspa
transition models have been inserted between all notes. Two
different approaches to transition models have been teStesl
first uses two transition models, for ascending and desogndi
transitions respectively. The second uses four transitiodels
with ascending and descending transitions classified asreit
large (intervals larger than 3 semitones) or small (intsred
3 semitones or less). The transition models rely heavilyhen t
pitch delta and voicing coefficients to detect note onsets an
endings.

The lack of sufficient training data often leads to some un-
dertrained HMM states. To address this we have employed
state tying, commonly used to deal with undertraining irespe
recognition applications [8, p.148-150]. For HMM'’s with-be
tween 3 and 6 states, we have tied all but the first 2 states. The
independent states are left to model the initial instabdiiring
the note onset.

4.3. Noterecognition grammar

Our first protoype systems exhibited a high rate of insestion
since HMM'’s cannot adequately model durations. A single sus
tained note was often interpreted as a series of repetitibtine
same note. In an effort to avoid this, a simple non-repetitiv
grammar model has been implemented. A 3 note system exam-
ple is shown in Figure 8.

This grammar allows transitions from each note to all other
notes, but does not allow repetitions of the same note withou
separating silence.

Inside Transitions
Outside Transitions

Figure 8:Non-repeating note grammar network.

5. Results

We have tested the performance of various system configura-
tions when applied to the transcription of the test-set.nTra
scriptions were obtained by Viterbi decoding using the gtiou
models and the recognition grammar described in the previou
section. The systems are evaluated in terms of recognition a
curacy as defined in Equation 1. The percentage transeriptio
accuracyA, is defined as follows:

Num — Del — Sub — Ins % 100% 1)
Num
Where Num is the total number of notes in the transcrip-
tion reference.Del is the number of deletion erroréns the
number of insertion errors anslub the number of substitution
errors. The default HTK error weights [8, p.183-184] haverbe
used to evaluate our system. The language model likelihood
scaling factor [8, p.183], referred to as timer model transi-
tion penalty used to balance the number of insertion and dele-
tion errors have been kept a0 for all experiments.

A=

Table 2:Basic system performance for feature vectors including
pitch(P), delta pitch(D) and voicing(V)

| HuM states|| P || P+D || P+D+V |
1 70.48 || 51.78 || 55.47
2 88.31 | 84.75|| 75.28
3 85.67 || 85.42 || 81.18
4 84.44 || 87.52|| 81.49

The first system in Table 2, employs a single HMM for each
note, with no transition models. The number of states in each
HMM was varied between 1 and 4, and the feature consisted of
pitch only(P), pitch and delta pitch(P+D), or pitch, delitch
and voicing(P+D+V).

The system in Table 3 uses the components of the first sys-
tem, but also includes transition models between notes. For
single-dimensional feature vectors consisting only ofglieh
estimate, the introduction of transition model leads gelheto
a deterioration in performance. Since the transition moeded
designed to model the change of pitch during the transitiomf
one note to the next, they cannot be sufficiently charaaei
pitch alone.

When the delta-pitch is added to the feature vector, the in-
clusion of the transitional models does lead to a performanc



Table 3: Performance of the transcription system when transi-
tion models are included

| HuM states|| P || P+D || P+D+V |
1 87.27]] 71.53|] e8.27
2 87.76 || 81.43 || 82.41
3 84.56 || 86.16 || 86.84
4 82.84 || 88.01 || 87.39

Table 4:Performance of the transcription system when tied state
modeling is included

HMM States|| P || P+D || P+D+V |
3 84.19 || 85.85 | 80.38
4 87.45 || 85.67 || 78.66
5 86.59 || 85.79 || 80.69
6 85.73 || 84.93 || 79.77

improvement. Only the four transition model system resarés
shown, although both systems perform with very similar accu
racy. The system in Table 4 uses the components of the first
system, but ties all but the first 2 HMM states in an attempt
to improve model robustness while allowing the inclusioraof
larger number of states.

Table 5:Performance of the transcription system when tied state
modeling and transition models are included

HMM StatesH P H P+D H P+D+V ‘
3 84.13 || 85.67 87.15
4 87.70 || 88.31 85.49
5 88.36 || 86.95 84.50
6 88.50 || 87.70 83.46

Lastly, the system in Table 5 combines all the refinements
of the previous three systems. Although some of the simpler
systems perform equally well in terms of recognition accyra
the tied state transitional model system seems to be more ro-
bust, since it leads to more consistent improvements, asrsho
in Figure 9.

The dataset contains a large number of technical exercises
featuring uninterrupted vowel sequences. This improveshpi
track continuity, but tends to degrade the usefulness ofdie
ing feature whose addition is seen to generally degrademperf
mance. This phenomenon is also reflected in the feature com-
parison in Figure 10.

Figure 11 provides a recognition accuracy comparison of
the different systems implemented and also of the different
number of HMM states used. The top graph highlights the con-
sistent gains achieved by introducing transition modets an
tying HMM states. The bottom graph shows the effect of in-
creasing the number of states. The necessity of modeling not
only the stable pitch region of a note, but also the note carset
transition regions between notes can be seen in the signtifica
recognition accuracy improvement from single state HMM's t
HMM'’s with a multiple number of states.

NOT TESTED

NUMBER OF HMM STATES

NOT TESTED

BASIC TRANS  BASIC TIED TRANS TIED

Figure 9:System performance comparison in terms of recogni-
tion accuracy. Darker colours indicate higher recognitipar-
centages as shown by the legend to the right. The columns of
each system represent the different feature vector comnpusi
Pitch, Pitch and Deltas, Pitch,Deltas and Voicing respesity.
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Figure 10: Feature comparison. The average and best sys-
tem performance over all number of states: The horizontal
axis labels represent the 4 different systems, (B)asie@syst
(Transition models added, (B)asic system with (T)iedestat
and (T)ransition models with (T)ied states. The abbrewiati
directly above the figure denote the type of feature vectseslu
(P)itch, (P)itch(+D)eltas, (P)itch(+D)eltas(+V)oicing

6. Conclusions and future work

A basic transcription system using HMM’s, is proposed. The
system introduces the concept of transition models, a non-
repetitive grammar and tied-state modelling. The system in
corporating both transient models and tied-state modgliis
shown to have the best average performance, although the var
ous systems perform very similar in terms of best perforraanc
The best achieved recognition accuracy was 88.50 %. How-
ever, the incorporation of delta-pitch and voicing feasuneas
less successful. These may still however be useful for alegrt
purposes in the sight-singing tutor.

Providing that the dataset can be expanded significandy, th
system can also be improved by introducing vibrato modgllin
to reduce note model variance. Bigram and trigram event mod-
els could also be introduced as context dependant note mod-
els. Other components such as musicologically based ti@msi
probabilities and rhythm estimation, which have alreadgrbe
proposed and used with some success, could also be incorpo-
rated. By using an HMM based system, the current note seg-
mentation is sufficient to allow note quantization, althiousy
reliable rhythm estimation component should be implengnte
first.

The current system is ultimately to serve as front-end to a
interactive feedback system, also referred to as a siglirgj
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Figure 11:Average system and state comparison.

tutor. In order to score the singing performance, a priceref
ence of the performance is available to the recognitionesyst
This allows for the use of forced time-alignment [8, p. 1&B]L
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