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Abstract
A singing transcription system transforming acoustic input

into midi note sequences is presented. Notes are individually
modeled by hidden Markov models (HMM’s) using untuned
pitch, delta and voicing coefficients as feature vectors. Efficient
use of a limited amount of training data is achieved by means
of state tying. Explicit transition models are introduced to bet-
ter identify boundaries between notes that are otherwise poorly
modeled, and a non-repetitive grammar introduced to reduce
insertions. The system is found to be able to transcribe sung
passages with 88.5% accuracy.

1. Introduction
Transcription can be described as the act of translating from
one medium to another. Transcription of a musical performance
into a text representation is accomplished by means of a set of
well defined symbols, designed to capture various characteris-
tics and components of the performance. This translation into
standard music notationis referred to as amusical score. Cur-
rently this process requires a skilled music professional and is
done by hand.

The integration of computers and music, in terms of edu-
cation, can be divided into four disciplines: teaching of mu-
sic fundamentals, music performance evaluation, music anal-
ysis and music composition. An overview of these fields can
be found in [1]. Although not educational in nature itself, au-
tomatic transcription of music can be used as a first stage to
a number of educational applications. When applied to mono-
phonic singing, automatic transcription creates opportunities for
applications like melody database retrieval of music also re-
ferred to as query-by-humming (QBH) systems, sight-singing
tutors, structured audio [2] and various singing analysis sys-
tems.

Although the monophonic transcription problem for spe-
cific instruments was largely solved approximately 20 yearsago
[3], the overall flexibility of the human voice as an instrument
expands the problem sufficiently to sustain current research in-
terest and contributions. Especially the variance in timbre dur-
ing phonetically unrestricted singing requires that both the time
and frequency domain be used for note onset/offset cues. As
noted byViitaniemi et al[4] andClarisse et al[5], segmentation
and quantization of the continuous pitch track into a sequence
of notes is still an unsolved area of research. Although the cur-
rently larger QBH research field has provided much insight into
the processing of singing signals, the need for a note level resp-
resentation is of greater importance in the transcription domain,
since it corresponds exactly to the output level of representation.
The observation therefore made byShih et al[6] regarding the
neglect of notes as individual musicological units in QBH sys-
tems, is of even greater significance to the singing transcription
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Figure 1:Schematic diagram of a sight-singing tutor.

community.
The work presented in this paper, is closely related to the

system proposed in [7], whereby notes are individually mod-
eled within a statistical framework. Our system makes use of
HTK [8], an HMM toolkit designed for speech recognition ap-
plications. Furthermore, our system is intended eventually to
be used as a sight-singing tutor platform, and is therefore not
refined to be a state-of-the-art transcription system. We have
therefore not applied pitch tuning and extensive duration mod-
elling. A schematic representation of a sight-singing tutor sys-
tem can be seen in Figure 1. With a sight-singing tutor system
the user is asked to sing a selected vocal exercise. This exercise
is then used by the system as a transcription reference and is
compared with the users audio input transcription to determine
how accurately the user has sung. The user is then given visual
feedback of the singing peformance.

The structure of the paper is as follows: Section 2 gives a
general overview of the proposed system and its various compo-
nents, followed by details on how the dataset was constructed in
Section 3. Section 4 describes the acoustic modelling of notes
and explains the choice of feature vectors, HMM model topol-
ogy and grammar. The evaluation of our system is presented in
Section 5. The conclusions reached and further recommenda-
tions regarding our system are given in Section 6 and conclude
the paper.

2. System Overview
Most statistical singing transcription systems are built using the
modules shown in Figure 2. Audio input is low-pass filtered to
reduce high-frequency noise and harmonics. The filtered signal
is transformed into an intermediate-level representationwhich
captures the most essential characteristics and is referred to as
signal features. These vectors are used to adjust the statisti-
cal models, HMM’s in our case, to represent the events being



modeled. The one-to-one correspondence between the statisti-
cal models and the identity of the notes makes the transcription
process conceptually simple. The recognition and segmenta-
tion process proceeds by finding the most likely event sequence
given a network of models, that would account for the features
being observed. Lastly, the note sequence can be adjusted by
evaluating each note in terms of the overall sequence within
which it occurs, its musicological context and by means of note
transition probabilities based on a major-minor scale key pair.
Note duration restrictions can also be applied during this phase
to absorb clear insertions. In some systems such sequentialcon-
straints are integrated into the preceding recognition stage. The
final translation of a note sequence to sheet music requires du-
ration quantization and interpretation of the sequence in terms
of accepted music notation.

Grammar Post−Processing

Musical Score

Recognition and Segmentation

Low−pass Filter

Feature Vector Extraction

Waveform

Figure 2: Schematic representation of a singing transcription
system.

3. Corpus
Due to the lack of recordings of suitable monophonic singing
with which to train statistical models, a new dataset was com-
piled. In order to maximize the limited amount of data the cor-
pus range has been limited to female sopranos only. The dataset
contains 10671 notes from 15 female soprano voices spanning
32 semitones (from G3 to D6#). The UNISA grade III, IV and
V prescribed list of technical singing exercises was used asa
basis for our corpus. Each of the 15 subjects was required to
sing an average of 50 such exercises during a recording session.
Figure 3 shows a typical example.

Figure 3:Unisa vocal exercise example.

Table 1 shows how the dataset was divided into training
and testing data. TheProTools LE 7.1recording software and
a Rhode NT2000 Studio Condenser Microphonewere used. All

Table 1:Dataset partition information
Descriptor Training Set Testing Set

Number of singers 12 3
Number of exercises 624 176

recordings were stored using 16-bit linear encoding at a sam-
pling rate of 44.1kHz. Figure 4 displays the distribution ofall
the notes in the dataset.
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Figure 4:Distribution of notes in the dataset.
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Figure 5: Histograms of automatically estimated pitch values
for each note in the training set. The plots show the number of
pitch estimates calculated for each note model. In the graphon
the right the histogram bin maximum has been clipped to better
show the number of octave and fifth error intervals. Each bin
represents 37.5 cents≈ 1

3
semitones. The bin range spans the

midi note numbers 21 - 96.

4. Acoustic Modelling
In order to process the dynamic nature of the human voice, a
flexible approach is needed. As can be seen in Figure 5, the
various notes in the training dataset display a notable amount
of variance in terms of estimated pitch frequency (pitch estima-
tion will be descirbed in Section 4.1.1). The variability can be
attributed to singing errors, pitch estimation errors and transi-
tion instability regions, but also the inherent stochasticelement



of music. Ryynänen et al[7] describes note events as being
”musicological units having dynamic nature”. Hidden Markov
models are well suited to this type of problem and are often used
for time series modelling. In particular, HMM’s can be used to
find the optimal corresponding ‘hidden’ (note) event sequence,
given some observed characteristics regarding the melody (i.e.
pitch) [4].

The various initialization, training and testing steps associ-
ated with most HMM based recognition systems, including the
proposed system, are outlined in Figure 6. Firstly, every note se-
quence within the dataset has to be manually transcribed. The
labelling process can be very time consuming, as some note se-
quences may be incorrect or not suitable for training. A hidden
Markov modelλ is defined in terms of the matrix of transi-
tion probabilitiesA, the observation probability distributionsB
and the initial state distributionπ: λ = (A, B, π). The model
is initialized and then trained by locally optimizingP (O|λ),
the probability of observing the sequence of feature vectors O,
given a certain modelλ. This iterative model training pro-
cess is known as Baum Welch re-estimation [9, 10]. Once the
HMM parameters have been trained, the recognition of notes se-
quences can be determined, using the Viterbi algorithm [11,12]
which seeks to find the single state sequenceQ, that maximizes
the probabilityP (Q,O|λ), given an observation sequenceO.
The most likely note model sequence can then easily be found
from the best state sequence. To evaluate the system, each gen-
erated note sequence is compared to its reference transcription
and an accuracy is calculated.
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Figure 6:Acoustic modelling and evaluation steps.

4.1. Feature Vectors

Unlike speech recognition features that are focused mainlyon
pronunciation and are largely pitch independent, singing tran-
scription must focus on the pitch and be pronunciation indepen-
dent. Our system uses pitch, with pitch-delta and voicing coeffi-
cients added to assist in note boundary detection. Given that the
technical exercises of the dataset consist mainly of singlelegato
phrases, the energy envelope itself is not helpful for the extrac-
tion of note event features. Many systems use adaptive pitch
tuning [4, 7, 13], but since the system will be expanded in the
future to accommodate user feedback, absolute pitch frequency
is used instead.

4.1.1. The Yin pitch estimator

We use theYin algorithm as proposed in [14], as our primary
pitch estimator. This algorithm has been found to be effective
in other music transcription systems [4,7].

For a given discrete time-domain signalx, sampled at a
frequencyfs, the Yin algorithm outputs the fundamental fre-
quencyfo at timet together with a voicing parametervt. The
algorithm is based on a squared difference functiondt(τ ) which
is calculated over a window ofW samples and is similar to the
AMDF function [15]:

dt(τ ) =
t+W
X

j=t

(xj − xj+τ )2

Hereτ is an integer lag variable such thatτ ∈ [0, W ). The
difference function is normalized by dividing by the cumulative
mean of the function over shorter lag periods:

d
′

t(τ ) =



1 τ = 0
dt(τ )/[( 1

τ
)

Pτ

j=1 dt(j)] otherwise

This eliminates the need to define a lower limit forτ within
d
′

t(τ ), since the cumulative mean function seeks to maximize
the difference function for small lag periods below the pitch
period range of interest. The Yin algorithm finds the local mini-
mum with the smallest lag periodτ

′

, and then interpolates over
the interval{τ

′

− 1, τ
′

+ 1} . The minimum of the interpola-
tion polynomial is chosen asτp. The pitch period can then be
converted to an absolute frequency usingfo(t) = fs/τp. The

voicing parametervt is given byd
′

t(τp), which is the magnitude
of the Yin function atτp. This parameter is a function of the
strength of the correlation atτp, which is related to the overall
degree of periodicity in the signal within the current frame. To
enhance pitch continuity and reject clear spurious peaks, only
pitch values within the range of 27.5 – 2093.0 Hz (A0 – C7) are
accepted as valid, with invalid values set to the previous valid
pitch value. The pitch track is smoothed with a 10th order me-
dian filter.
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Figure 7:Typical pitch,voicing and delta features.



4.1.2. Delta coefficients

The time differentials of the pitch values, referred to as delta
coefficients, are calculated at timet using the regression for-
mula [8, p.63] given by:

dfo(t) =

PΘ
θ=1 θ(fot+θ

− fot−θ
)

2
PΘ

θ=1 θ2

The window width parameter,Θ, is set to 2 in our experiments.
Figure 7 illustrates a typical pitch track and its associated voic-
ing and delta-pitch values.

4.2. Note event modelling

Due to the similarities between singing transcription and speech
recognition, it seems reasonable to incorporate some of thewell
researched methods and tools that the latter field has to offer.
For this reason the HTK speech recognition toolkit [8] has been
used for most of our training and recognition procedures. The
subjective and unpredictable nature of the human voice calls for
a flexible approach, whereby the inherent variability in singing
can be modeled and weighted according to probabilistic mea-
sures.

Each semitone, corresponding to midi numbersn = 55...86
is modeled with a single-Gaussian non-skipping left-to-right
HMM with the number of states ranging between 1 and 4. As
pointed out byRyynänen et al[7], the various states in the
HMM models can be seen to represent the different stages in
a note event. Initialization of models is achieved by computing
and assigning a single global training set mean and varianceto
all models. Apart from the note onset uncertainty, the transition
regions between notes tend to degrade the overall modellingac-
curacy of notes since the transient pitch is context dependent
and can vary greatly depending on the note interval and pronun-
ciation. To decrease this initial note model variance, separate
transition models have been inserted between all notes. Two
different approaches to transition models have been tested. The
first uses two transition models, for ascending and descending
transitions respectively. The second uses four transitionmodels
with ascending and descending transitions classified as either
large (intervals larger than 3 semitones) or small (intervals of
3 semitones or less). The transition models rely heavily on the
pitch delta and voicing coefficients to detect note onsets and
endings.

The lack of sufficient training data often leads to some un-
dertrained HMM states. To address this we have employed
state tying, commonly used to deal with undertraining in speech
recognition applications [8, p.148-150]. For HMM’s with be-
tween 3 and 6 states, we have tied all but the first 2 states. The
independent states are left to model the initial instability during
the note onset.

4.3. Note recognition grammar

Our first protoype systems exhibited a high rate of insertions
since HMM’s cannot adequately model durations. A single sus-
tained note was often interpreted as a series of repetitionsof the
same note. In an effort to avoid this, a simple non-repetitive
grammar model has been implemented. A 3 note system exam-
ple is shown in Figure 8.

This grammar allows transitions from each note to all other
notes, but does not allow repetitions of the same note without a
separating silence.

nullBegin Sil

Note A

Note C

Note B End Sil

Inside Transitions

Outside Transitions

null

Figure 8:Non-repeating note grammar network.

5. Results
We have tested the performance of various system configura-
tions when applied to the transcription of the test-set. Tran-
scriptions were obtained by Viterbi decoding using the acoustic
models and the recognition grammar described in the previous
section. The systems are evaluated in terms of recognition ac-
curacy as defined in Equation 1. The percentage transcription
accuracy,A, is defined as follows:

A =
Num − Del − Sub − Ins

Num
× 100% (1)

WhereNum is the total number of notes in the transcrip-
tion reference.Del is the number of deletion errors,Ins the
number of insertion errors andSub the number of substitution
errors. The default HTK error weights [8, p.183-184] have been
used to evaluate our system. The language model likelihood
scaling factor [8, p.183], referred to as theinter model transi-
tion penalty, used to balance the number of insertion and dele-
tion errors have been kept at−20 for all experiments.

Table 2:Basic system performance for feature vectors including
pitch(P), delta pitch(D) and voicing(V)

HMM States P P+D P+D+V

1 70.48 51.78 55.47

2 88.31 84.75 75.28

3 85.67 85.42 81.18

4 84.44 87.52 81.49

The first system in Table 2, employs a single HMM for each
note, with no transition models. The number of states in each
HMM was varied between 1 and 4, and the feature consisted of
pitch only(P), pitch and delta pitch(P+D), or pitch, delta pitch
and voicing(P+D+V).

The system in Table 3 uses the components of the first sys-
tem, but also includes transition models between notes. For
single-dimensional feature vectors consisting only of thepitch
estimate, the introduction of transition model leads generally to
a deterioration in performance. Since the transition models are
designed to model the change of pitch during the transition from
one note to the next, they cannot be sufficiently characterized by
pitch alone.

When the delta-pitch is added to the feature vector, the in-
clusion of the transitional models does lead to a performance



Table 3:Performance of the transcription system when transi-
tion models are included

HMM States P P+D P+D+V

1 87.27 71.53 68.27

2 87.76 81.43 82.41

3 84.56 86.16 86.84

4 82.84 88.01 87.39

Table 4:Performance of the transcription system when tied state
modeling is included

HMM States P P+D P+D+V

3 84.19 85.85 80.38

4 87.45 85.67 78.66

5 86.59 85.79 80.69

6 85.73 84.93 79.77

improvement. Only the four transition model system resultsare
shown, although both systems perform with very similar accu-
racy. The system in Table 4 uses the components of the first
system, but ties all but the first 2 HMM states in an attempt
to improve model robustness while allowing the inclusion ofa
larger number of states.

Table 5:Performance of the transcription system when tied state
modeling and transition models are included

HMM States P P+D P+D+V

3 84.13 85.67 87.15

4 87.70 88.31 85.49

5 88.36 86.95 84.50

6 88.50 87.70 83.46

Lastly, the system in Table 5 combines all the refinements
of the previous three systems. Although some of the simpler
systems perform equally well in terms of recognition accuracy,
the tied state transitional model system seems to be more ro-
bust, since it leads to more consistent improvements, as shown
in Figure 9.

The dataset contains a large number of technical exercises
featuring uninterrupted vowel sequences. This improves pitch
track continuity, but tends to degrade the usefulness of thevoic-
ing feature whose addition is seen to generally degrade perfor-
mance. This phenomenon is also reflected in the feature com-
parison in Figure 10.

Figure 11 provides a recognition accuracy comparison of
the different systems implemented and also of the different
number of HMM states used. The top graph highlights the con-
sistent gains achieved by introducing transition models and by
tying HMM states. The bottom graph shows the effect of in-
creasing the number of states. The necessity of modeling not
only the stable pitch region of a note, but also the note onsetand
transition regions between notes can be seen in the significant
recognition accuracy improvement from single state HMM’s to
HMM’s with a multiple number of states.
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Figure 9:System performance comparison in terms of recogni-
tion accuracy. Darker colours indicate higher recognitionper-
centages as shown by the legend to the right. The columns of
each system represent the different feature vector compositions:
Pitch, Pitch and Deltas, Pitch,Deltas and Voicing respectively.
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Figure 10: Feature comparison. The average and best sys-
tem performance over all number of states: The horizontal
axis labels represent the 4 different systems, (B)asic system,
(T)ransition models added, (B)asic system with (T)ied states
and (T)ransition models with (T)ied states. The abbreviations
directly above the figure denote the type of feature vectors used:
(P)itch, (P)itch(+D)eltas, (P)itch(+D)eltas(+V)oicing.

6. Conclusions and future work
A basic transcription system using HMM’s, is proposed. The
system introduces the concept of transition models, a non-
repetitive grammar and tied-state modelling. The system in-
corporating both transient models and tied-state modelling, is
shown to have the best average performance, although the vari-
ous systems perform very similar in terms of best performance.
The best achieved recognition accuracy was 88.50 %. How-
ever, the incorporation of delta-pitch and voicing features was
less successful. These may still however be useful for alignment
purposes in the sight-singing tutor.

Providing that the dataset can be expanded significantly, the
system can also be improved by introducing vibrato modelling
to reduce note model variance. Bigram and trigram event mod-
els could also be introduced as context dependant note mod-
els. Other components such as musicologically based transition
probabilities and rhythm estimation, which have already been
proposed and used with some success, could also be incorpo-
rated. By using an HMM based system, the current note seg-
mentation is sufficient to allow note quantization, although a
reliable rhythm estimation component should be implemented
first.

The current system is ultimately to serve as front-end to a
interactive feedback system, also referred to as a sight-singing



Figure 11:Average system and state comparison.

tutor. In order to score the singing performance, a prior refer-
ence of the performance is available to the recognition system.
This allows for the use of forced time-alignment [8, p.186-186].
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