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Abstract
Current TTS systems generally require large annotated speech
corpora in the languages for which they are developed. For
many languages these resources are not available. In their ab-
sence, a TTS system must generate synthetic speech by means
of mathematical algorithms constrained by certain rules.

This paper describes a rule-based speech generation algo-
rithm for use in a TTS system. The system allows phonetic and
prosodic content as well as other parameters associated with a
sound and its particular mode of articulation to be specified.
Linear predictive (LP) models of monophone speech units are
used, greatly reducing the amount of data required for develop-
ment in a new language. A novel approach to the interpolation
of monophone speech units is presented to allow realistic transi-
tions between monophone units. Additionally, novel algorithms
for estimation and modelling the harmonic and stochastic com-
ponents of an excitation signal are developed.

Promising first results were obtained when evaluating the
developed system’s South African English speech output intel-
ligibility using the modified rhyme test (MRT) and semantically
unpredictable sentences (SUS).

1. Introduction
This paper describes the development of a flexible speech gen-
eration system that is not restricted to any specific language.
Portability and extendability were considered important in or-
der to allow the adapting to different devices. Language-
independence is particularly important in a country such as
South Africa, which has eleven official languages. Although
project restrictions did not allow testing in multiple languages,
the system is designed to synthesise speech in any target lan-
guage if given a suitable phonetic description.

Concatenative TTS systems are currently state-of-the-art,
but have certain inherent disadvantages due to their dependency
on an associated speech corpus [1]. These include language,
accent and pronunciation dependencies as well as the possibility
that the data may not contain all synthesis units in all the desired
phonetic contexts. Recording and annotating a speech database
for use in a concatenative TTS system is also a time-consuming
and laborious process. For these reasons it was decided thata
synthesis system based on a speech production model may be
better suited to the problem.

Monophones were chosen as the basic synthesis units, and
linear prediction (LP) for speech modelling. In this way, each
synthesis unit could be represented by a single LPC vector. This
is in contrast to the use of diphones/triphones, of which there is
a much larger number per language and modelling requires mul-
tiple parameter vectors for each unit. The use of monophones
and parametric modelling also eases the adaptation of the sys-
tem to a new language greatly, since the number of monophones

Figure 1:The components of a TTS system.

is always much smaller than the number of diphones or tri-
phones, and many languages do not have comprehensive an-
notated databases from which the latter synthesis units canbe
extracted. Using monophones, however, requires us to model
the inter-phone transitions which are otherwise implicitly mod-
elled in the recorded units. It also requires a flexible parametric
excitation signal model suited to such interpolation.

Within our system, each monophone is represented by a set
of 30 LPC’s and 3 excitation signal parameters, all of which are
estimated automatically from recordings of individual mono-
phones. For synthesis, the system uses the source-filter model
of speech production such that an excitation signal is gener-
ated from the appropriate parameters and filtered by their cor-
responding LPC’s. An utterance, specified as a sequence of
monophones, is synthesised by generating smooth parameter
trajectories between consecutive monophone vectors by inter-
polation.

The current system consists of only a speech generation
module (shaded in Fig. 1). There is currently no front-end pro-
viding text and linguistic analysis. Hence no attempt is made
to generate prosodic and other higher-level information from
the text. Instead, this is assumed known. The system allows
multiple prosodic contours to be overlaid within an utterance to
ensure maximum flexibility [2]. Not all of the advantages of
this approach are exploited in the current implementation,but
remain the subject of future work.

2. Excitation Modelling
Various models that can be used for the excitation signal
within a source-filter framework were considered for the sys-
tem. Among these are Gaussian noise for the unvoiced compo-
nent as well as impulse trains andRosenberg-Klatt(RK, from
[3]) waveforms for the voiced component. However, these mod-
els do not allow explicit control over the number of harmon-
ics in the excitation or their frequency-domain envelope. For
this reason, a mixed excitation model incorporating a sinusoidal
voiced component and a Gaussian unvoiced component was de-
veloped.
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Figure 2:Spectrum and sinusoidal model of a voiced residual.

2.1. Sinusoidal Excitation

Our excitation model is based on the Harmonic plus Noise
Model (HNM) of speech, in which the speech signal is defined
in terms of a sum of sinusoidal harmonics and a noise compo-
nent, similar to the one described in [4]. The excitation spec-
trum is divided into a lower harmonic (voiced) band and an up-
per noise (unvoiced) band. The frequency point that separates
these two bands is referred to here as the harmonic cutoff fre-
quency, denotedFmax. In our case:

h(t) =

K(t)
X

k=1

Ak(t) cos(kθ(t) + φk(t)) (1)

with

θ(t) = 2π

Z t

−∞

F0(λ)(d)λ (2)

whereh(t) denotes the harmonic component of the excitation
andK(t) is the time-varying number of harmonics determined
by the pitchF0(t) andFmax(t). Ak(t) is the amplitude of the

kth harmonic andφk(t) its phase at timet. In our system, the
additive noise component is modelled simply as Gaussian white
noise and is therefore not limited to the upper band.

This model allows us to specify the excitation signal’s fre-
quency envelope by specifyingAk(t), thereby finding a rep-
resentation which is spectrally similar to the recorded speech
units, as shown in Fig. 2. It is, however, impractical to use
Ak(t), θ(t) andφk(t) as the excitation model parameters due
to their large number and their dependence on the time-varying
F0 andFmax. Instead, we introduce for each monophone a lin-
earharmonic frequency envelope, which decays fromA1(t) to
AK(t)(t) = 0 at Fmax. This linear function specifies the am-
plitude of each harmonic in the voiced band, and alleviates the
need to estimate each separately. The phase was found to be of
little perceptual importance during informal listening tests, and
hence not modelled.

2.2. Fmax Estimation

The separation of voiced and unvoiced components within a sin-
gle observation of a speech signal is not easy. In this section we
present a method for determining the cutoff frequencyFmax for
a particular monophone, based on the sound’s degree of voic-
ing. We will employ the excitation signal’s Gaussianity as a
measure of this voicing. The term “Gaussianity” will be used
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Figure 3:Gaussian, supergaussian and subgaussian PDF’s.

to refer to the degree to which a signal’s distribution approaches
that of Gaussian data. This approach is based on the observation
that the noise component in a speech LP residual signal (and its
spectrum) has a Gaussian distribution.

Consider a Gaussian random variablex with meanµX = 0
and varianceσ2

X = 1. The PDF ofx then has the form:

fX (x) =
1√
2π

e
− 1

2
x2

(3)

We now calculate the expected value of the PDF of a zero mean,
unity variance Gaussian random variable as:

E [fX(x)] =

Z ∞

−∞

(
1√
2π

e
− 1

2
x2

)2dx

=
1

2
√

π
(4)

using properties of the error function erf(a) = 2
√

π

R a

0
e−t2dt.

We can now quantify the Gaussianity of a residual signalε(n)
by estimating the expectation:

mfε =
1

N

N−1
X

n=0

1√
2π

e
− 1

2
ε̂(n)2 (5)

where ε̂(n) = ε(n)−µε

σε
is the normalised residual. Because

unvoiced residual signals are approximately Gaussian, we ex-
pectmfε to be close to 1

2
√

π
for these sounds, whereas residual

signals that contain some voicing should yield higher values be-
cause their true distribution is supergaussian (more peaked than
a Gaussian, see Fig. 3).

Table 1 lists the values ofmfε measured for some exam-
ples of the different sound classes. As expected, vowels have
the highest values. Values for voiced sounds containing more
unvoiced content (nasals, approximants and voiced fricatives)
are lower, with unvoiced fricatives producing the lowest values
of mfε , which are very close to the theoretical value of1

2
√

π

(≈ 0.2821). Therefore Table 1 confirms thatmfε is able to
estimate the degree of voicing for these sounds.

Plosives sounds, however, yielded erratic values and do not
appear to be distinguishable as voiced or unvoiced usingmfε .
This is due to the non-stationary behaviour of these sounds,
which are produced by a short burst of energy. This apparently
causes a plosive sound residual to be supergaussian, even when
the sound itself is completely unvoiced. Furthermore, closer in-
spection of the values in Table 1 reveals thatmfε yields values



Table 1:Gaussianity estimates for various sound classes.

Class Phone mfε

/i long/ 0.307
Vowel /ep long/ 0.322

/a long/ 0.316
/m/ 0.292

Nasal /n/ 0.298
/nj/ 0.301
/rt/ 0.296

Approximant /l/ 0.294
/w/ 0.287
/v/ 0.292

V. Fricative /z/ 0.296
/zh/ 0.302
/f/ 0.284

U. Fricative /s/ 0.283
/sh/ 0.283
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Figure 4:Exponential curve fitting to residual Gaussianity.

within similar ranges for nasals, approximants and voiced frica-
tives. During informal listening tests of synthesised sounds, this
was found to result in unnatural nasals and approximants dueto
a large stochastic component.

Residual signal harmonics in the case of the nasals consid-
ered are discernible up to between3.5kHz and5.5kHz. In
contrast, residual harmonics of voiced fricatives appear to de-
cay more rapidly with frequency and are discernible only up to
between1.5kHz and3kHz. Also, we found that voiced frica-
tive residual harmonics are larger in magnitude than those of the
nasal sounds. These two factors combine to cause the global
measures of Gaussianity to be similar for these sounds, since
they do not take into account the harmonic frequency envelope.

In order to estimateFmax for a given LP residual, we will
measure how the residual’s Gaussianity changes over frequency.
This will allow us to define some thresholdFmax beyond which
we can assume the harmonic content to be zero. Let us there-
fore applymfε (which has thus far applied to time signals) to
FFT spectra. It has been observed that, even though the FFT
operation may alter the distribution of the signals, we still find
that the FFT samples in the upper (unvoiced) frequencies ap-
pear more Gaussian than the lower (voiced) frequencies. We
therefore proceed by assuming that the Gaussianity measures
will yield values closer to that of ideal Gaussian noise at high
frequencies than at low frequencies if voicing is present.

Fig. 4 shows the variation ofmfε as a function of frequency
for the LP residuals of the nasal sound /nj/ (as in thing) and the
voiced fricative /zh/ (as ingenre). Note thatmfε cannot be
calculated directly from the magnitude spectrum. Instead,we
average the estimates for the real and imaginary parts of the
FFT.

The estimation ofFmax from the graphs shown can be ap-
proached in a variety of ways. One possibility is to observe that
the measuremfε for an LP residual signal of a sound that con-
tains voicing exhibits an approximately exponential decayover
frequency. Notice that the graphs tend to the theoretical value of

1
2
√

π
(≈ 0.2821) for Gaussian data associated with the param-

etermfε . Knowing this, we can fit a monotonically decreas-
ing exponential curve to the graph to ensure that each point on
the graph corresponds to a single frequency. Experimentally, it
was found that a value of0.285 is a suitable threshold for find-
ing Fmax when usingmfε as a measure of Gaussianity. The
exponential approximations are shown in Fig. 4. Setting the
threshold as indicated results inFmax ≈ 4.3KHz for /nj/ and
Fmax ≈ 2.6KHz for /zh/, which corresponds approximately
to the frequencies at which the harmonics are no longer dis-
cernible in the FFT spectra of these sounds.

3. Filter Parameter Interpolation
LSF’s were chosen as parametrisation for the monophone LP
filters because their relatively consistent and stable behaviour in
the transition regions between phones makes them well-suited
for interpolation [5]. A simple, flexible algorithm for calculat-
ing the LSF vectors within the transition regions between mono-
phones in a synthetic utterance was developed using modified
B-spline curves.

A B-spline curve is an interpolation method which is calcu-
lated forK target pointsMk such thatk = 0 . . . K − 1. The
driving concept behind the interpolation is that each interpo-
lated pointp(t) for 0 ≤ t ≤ K − 1 is calculated as a weighted
contribution of its surrounding target points. The nearesttarget
point has the greatest effect onp(t) to ensure that it follows the
general trend of the sequenceM0 . . . MK−1. For the purpose of
LSF interpolation between monophones, each LSF’s trajectory

is modelled by a single B-spline curve such that thekth LSF

value, which corresponds to thekth phone in a particular se-
quence, is equal toMk. This implies that the smooth curvep(t)
represents that LSF’s transitions at each point wheret 6= k. To
ensure thatp(t) forms a smooth curve, the target point weights
must be specified by a continuous functionW (d) (called the
basis function) of the distancedk(t) = k − t so thatW is a
maximum whend = 0 andW (d) decreases as|d| increases. In
practice, a polynomial approximation of the Gaussian function
spanning−2 < d < 2, which limits the number of contribut-
ing target points to2 or 3, is normally used. However, we have
used a sigmoidal basis function that allows for scalable transi-
tion rates and ensures an interpolated curve gradient that is close
to zero at its target points, and is defined as:

Ws(d, α) =



c

1+eα(2|d|−1) , 0 ≤ |d| < 2;

0 otherwise.
(6)

The choice ofc is of no consequence when transforming the
target points according to (9).

Several modifications to the B-spline interpolation algo-
rithm were made. These included introducing “phantom” target
points atk = −1 andk = K to ensure that the initial and final
gradients ofp(t) are zero, as well as the transformation of the
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Figure 5:Interpolation of an LSF within the word “deficit”.

entire set of target points to ensure thatp(t) passes through all
theMk. These two steps can be summarised as follows:
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(8)

wherewx = Ws(x, α) andM̂ denotes the transformed target
points such that

M̂ = Q
−1

M (9)

andQ−1 denotes the inverse of the transformation matrixQ.
Further modifications added flexibility to the method in

terms of duration control, since the above algorithm assumes
uniform spacing between target points. In practice, the spacing
is determined by the duration of the inter-phone transition. This
can be achieved by choosing the set of valuest in p(t) such that
each transition containsNk evenly spaced values oft, where
Nk is the number of desired samples in the transition between
a predecessor phonek and its successork + 1.

The developed LSF interpolation algorithm requires only
the sequence of specified phone LSF vectors, and is flexible
in terms of the durations of the constant and transition re-
gions of such a sequence. Fig. 5 shows the time-varying

(50ms frames,10 sample increments) measurements of the3rd

LSF of a30th order LSF vector within the phonetic sequence
/ep/→/f/→/sw/→/s/→/sw/ of the word “deficit” (recorded at
24kHz) together with the interpolated curve through its target
values, where constant and transition regions are separated by
crosses. Note that it is difficult to measure the LSF trajecto-
ries accurately on a short time-frame basis, and therefore the
variations in the measured LSF shown in Fig. 5 may be due to
inaccuracies in the estimation process rather than actual vocal
tract movements, as they are not consistently visible when vary-
ing the frame length. Overall, however, the synthetic transitions
are fairly similar to the measured transitions, which indicates
that the presented B-spline interpolation algorithm is suitable
for modelling LSF transitions between phones.
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Figure 6:Example of interpolated source signal parameters.

0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

“The time ran with the high head.” — natural reference

m
ag

ni
tu

de

“The time ran with the high head.” — synthetic reproduction

time (ms)

m
ag

ni
tu

de

Figure 7:Time waveforms of a natural and synthetic sentence.

4. Excitation Parameter Interpolation

An interpolation algorithm for calculating the source signal pa-
rameter transitions between phones was developed. Initialex-
periments applied the same interpolation scheme describedin
the previous section to the excitation signal parameters, since
these are included in each phone’s parameter vector. However,
it soon became clear that this was not ideal. Co-articulation ap-
pears to be more relevant to the vocal tract movements than to
the excitation signal, because the oral cavity is physically lim-
ited to a certain movement rate, whereas the source signal can
change much more abruptly at the glottis. It is for this reason
that it was decided to allow the source signal parameters to vary
more abruptly than the vocal tract parameters. According to[6],
40ms is a suitable duration for the source signal parameter tran-
sitions of most phonetic combinations. Since a preprocessor for
duration modelling is not present, a default transition duration
(40ms) had to be chosen. For more natural speech output, how-
ever, a rule set derived from speech data is required for effective
duration modelling [6].

The particular interpolation algorithm used to generate the
source signal parameter transitions was found to be of little per-
ceptual importance during informal listening tests. It is sus-
pected that the40ms window is short enough to make it diffi-
cult to discern slight variations in the source signal parameters.
It was decided to use a scaled and offset half period of a cosine
function to ensure the smooth excitation parameter transition.
Fig. 6 shows the interpolated curves of the parametersU (un-
voiced magnitude) andV (voiced magnitude) for the Afrikaans
name “Hansie”. For clarity,Fmax (which is interpolated in the
same way) is not shown.
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Figure 8:Spectrogram of a natural and synthetic sentence.

5. Results and Evaluation
Figures 7 and 8 show the time waveforms and spectrograms, re-
spectively, of a recorded sentence and its synthetic reproduction
as used during the system’s evaluation. The prosodic contours
used in the synthetic sentence were estimated from the natural
reference (recording), but the monophone models were obtained
independently. Note that the degree of voicing and the harmonic
frequency band defined byFmax, of the synthetic sentence is
very similar to that of the natural reference. The only clearex-
ception to this is the final speech sound in the sentence, /d/,
which is a voiced plosive and is known to be problematic. The
formant trajectories are similar in shape, although it appears that
the estimated duration model for this example did not allow for
sufficiently large transition durations.

5.1. Evaluation Procedures

A set of high quality recordings (Fs = 24kHz) were made
for each of 47 English monophones in a quiet room using a
high quality microphone connected to a mixer and a high qual-
ity USB audio capture device. A total of30 LPC’s were esti-
mated for each sound without pre-emphasis using theLevinson-
Durbin algorithm. The parameterFmax and the voicingmfε

were estimated for each sound according to the procedure de-
scribed in section 2.2.

The synthesiser developed in this thesis has been aimed at
producing intelligible speech, and little attention has yet been
given to the modelling of prosody, which is one of the main
factors influencing naturalness. Hence, only intelligibility tests
have been carried out. We used the modified rhyme test (MRT,
[7]) and semantically unpredictable sentences (SUS, [8]) speech
intelligibility tests for this purpose.

The tests were administered in a laboratory where, on aver-
age, 10–15 people were present at any given time. Background
noise was therefore not eliminated, but it was not sufficientto
disrupt the tests. The tests were performed using high quality
headphones connected to a personal computer (PC) via an ex-
ternal audio device. All audio files (PCM, 16 bits, mono) were
played at a sampling rate of24kHz. Among the 25 listeners, 23
were male and 2 female with their ages ranging between 20 and
40. 19 listeners were non-native South African English speak-
ers. Only 3 listeners indicated that they hear synthetic speech

on a regular basis.
A simple GUI was developed in order to ease the test proce-

dure. After some general information regarding the tests, each
listener was presented first with the MRT, followed by the SUS
test. More detailed instructions were shown immediately before
each test.

5.2. MRT Results

In order to generate the complete set of 300 MRT words without
a text- and linguistic analysis front-end, each word was manu-
ally transcribed to a phonetic representation. A duration model
was manually defined for each of the 50 ensembles for the com-
mon phonetic segments within the ensemble. All words were
synthesised at the same constant magnitude level and a pitch
curve was randomly selected for each instance from a set of ten
curves.

Table 2:MRT scores for various word subsets.

Test set Number Correct
of words

All words 1200 67.67%
Voiced plosives omitted 817 73.81%
Approximants omitted 910 68.57%
Both of the above omitted 596 75.00%

Table 2 summarises the results of the MRT. Also shown
is the percentage of correct words when all words containing
voiced plosives are omitted from the scoring set. These sounds
include /b/ (as in “baby”), /d/ (as in “death”) and /g/ (as in
“gun”). These figures are shown because of the known diffi-
culty the current synthesiser has in modelling voiced plosives.
Further analysis showed that 174 errors (44.85% of all errors)
occurred in words containing voiced plosives, 131 (33.76% of
all errors) of which are the result of a voiced plosive being clas-
sified incorrectly.

Some listeners commented that the approximants /rt/ (as in
“ red”) and /l/ (as in “legs”) were very unclear. The data seems to
support this statement, as there is a slight increase in the word
accuracy when these sounds are omitted from the scoring set,
although it is less pronounced than in the case of voiced plo-
sives. Analysis showed that 102 errors (26.29% of all errors)
occurred in words containing /rt/ or /l/, of which 38 (9.79% of
all errors) were caused by an incorrect classification of oneof
these sounds.

A comparative MRT evaluation of natural speech, 7 for-
mant synthesisers, 1 LPC synthesiser and 1 segment concatena-
tion synthesiser is presented in [9]. As one could expect, natural
speech yielded the highest word accuracies. Although the for-
mant synthesisers averaged 88.55%, their individual accuracies
ranged from 62.56% to 96.75%. Comparing the overall accu-
racy of 67.67% obtained by our system, we find that it compares
best with the LPC synthesizer at 64.44%.

5.3. SUS Results

For the SUS test, only 15 sentences (3 from each syntactic struc-
ture) were synthesised due to the difficulty associated withthe
manual definition of the phonetic and prosodic elements. These
sentences were first recorded, after which each was manually
transcribed phonetically. Phone and transition durationsas well
as pitch curves were manually extracted from each recordingfor
use in the generation of the corresponding synthetic utterance.



Table 3:Overall SUS test scores on sentence-, word- and pho-
netic level.

Test set Accuracy
Sentences 0.53%
Words 41.25%
Words (article “the” omitted) 29.14%
Phonetic transcriptions 47.97%

In order to prepare the listener to the linguistic abnormali-
ties in SUS, the test instructions showed 5 example sentences (1
from each syntactic structure) which were unrelated to the test
sentences at a word-level. The sentences were then presented
according to the procedure detailed in [8].

The results of the SUS test are shown in Table 3. At first
glance, a sentence accuracy of 0.53% appears to be very poor.
However, other studies show that sentence-level SUS test scores
are typically in the range 10–20% even for natural speech,
which reflects the difficulty of the test [8]. This is attributed
to the cognitive difficulty associated with transcribing seman-
ticaly unpredictable sentences. Some listeners commentedthat
the speaking rate of some sentences was too high for them to
clearly discern the different words in the sentences. Together
with the phonetic and prosodic constraints of the synthesissys-
tem described earlier, these facts provide some insights into the
cause of the low sentence accuracy obtained.

Table 3 shows that the overall word-level accuracy is
41.25%. Also shown is the word-level accuracy for the sen-
tences when the article “the” was not included in the scoring
procedure. The decreased accuracy when doing so shows that
this word is more easily identifiable than the other words oc-
curring in the sentences. We find that the overall “phonetic ac-
curacy” (refers here to the number of phonetic units, such as
phones or diphthongs, classified correctly) is higher than the
word-level accuracy. This indicates that many of the incor-
rect word transcriptions were phonetically similar to the actual
words.

A comparative French SUS test evaluation of natural
speech, 3 diphone-based synthesisers and 3 unit selection syn-
thesisers is presented in [10]. The results indicate word ac-
curacies of between 60% and 75% and phone accuracies of
between 70% and 85% for the synthesizers, whereas natural
speech yielded the best results (both word and phone accuracy
of approximately 90%). However, the word-level accuracies
were obtained by measuring the total number of correctpho-
netic transcriptionsof words.

Word-level and phonetic accuracies for each of the sen-
tences individually were also measured because some listen-
ers commented that the longer sentences proved more difficult
to remember during transcription. The results obtained seem
to support this. When omitting the longer syntactic structures
(4 and 5 in [8]), the word-level accuracy climbs to 48.77%
(35.59% without articles) and the phonetic accuracy to 55.34%.

6. Conclusions
The speech generation system that has been described in this
paper was aimed at the rapid deployment of TTS in new and
under-resourced languages. Although time did not allow for
formal testing in multiple languages, informal tests suggest that
the system will be well suited for this purpose. Compared to

concatenative synthesisers, which are the current commercial
TTS standard, the amount of transcribed speech data required
for a new target language is minimal. An added associated ad-
vantage is that the system has a very small memory footprint
(120 kilobytes, including the parametric monophone database
of 13 kilobytes) and fairly low computational requirements.

A novel approach to the interpolation of monophone speech
units was presented to allow realistic transitions betweenmono-
phone units. Additionally, novel algorithms were presented for
the estimation and modelling of the harmonic and stochastic
content of an excitation signal.

Within the current system, particular attention is given to
certain sound classes, such as plosives, which require specific
modelling techniques due to their non-stationary nature. How-
ever, a suitable representation for voiced plosives has notyet
been found, as is evident from our results. If the system is tobe
applied to other languages in the future, additional modelling of
certain new sound classes, such as the “click” sounds common
to African languages, may become necessary.

Even without a text preprocessing front-end, results of the
evaluation of the system in South African English show that the
synthetic speech generated by this system is moderately intelli-
gible. Since the system’s implementation encompasses onlythe
speech generation section of a full TTS synthesis system, these
results however cannot be used for direct comparison with other
synthesisers before the necessary modules of a full TTS system
are added.
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