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Abstract: Current speech synthesis systems generally require large and carefully annotated speech corpora
for their development. However, for many languages these resources are not available. This paper describes
a speech generation algorithm based on monophone subword units for minimal reliance on such databases.

amework, and includes a linear prediction
based vocal tract model as well as an excitation model. An interpolation algorithm is presented to allow co-
articulation between monophone units to be modelled. The excitation model includes a method for dealing
with voiced and partially-voiced sounds based on a Gaussianity measure applied to the excitation spectrum.

telligibility of the developed system’s South
nd semantically unpredictable sentences.
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1. INTRODUCTION

This paper describes the development of a speech genera-
tion system based on monophone subword units. The aim
is to provide a means of generating intelligible synthetic
speech with minimal reliance on specially-prepared and an-
notated databases. In the longer term, this represents an ef-
fort to develop a class of speech synthesis systems that can
easily be applied to new languages and accents. Language
and accent portability of this nature is particularly impor-
tant to the development and application of speech technol-
ogy in a strongly multilingual society such as South Africa.

Currently, concatenative speech synthesis systems are state-
of-the-art. However, due to their dependency on an associ-
ated carefully-annotated speech corpus, this class of sys-
tems has certain inherent disadvantages [4]. These include
language, accent and pronunciation dependencies as well
as the possibility that the data may not contain all synthesis
units in all the desired phonetic and/or prosodic contexts.
Recording and annotating a speech database for use in a
concatenative system is a very time-consuming and labori-
ous process which may not be suitable in situations where
resources are scarce.

framework, and makes use of an explicit vocal tract and ex-
citation model. This has the advantage of allowing direct
control over parameters such as pitch, duration and em-
phasis. Furthermore, our system makes use of an inven-
tory of monophone units. This strongly reduces the num-
ber of sounds that must be modelled, and guarantees full
coverage of the range of sounds that will be required dur-
ing synthesis. Such guarantees are much harder to achieve
using the more common diphone or triphone based sys-
tems, for which much larger and carefully-annotated speech
databases are required.

The following section describes the structure of our speech
generation system. Since we make use of monophones,
which are context independent, the co-articulatory effects
occurring at the transition between phones must be ac-

counted for explicitly. Section 3 describes an interpolation
method which has been developed for this purpose. Sec-
tion 4 deals with the excitation model, which incorporates
an original method for dealing with voiced and partially-
voiced sounds. Finally, the effectiveness of our system is
evaluated by means of perceptual tests in Section 5.

2. SYSTEM ARCHITECTURE

The general structure of a text-to-speech (TTS) system is
shown in Figure 1. In this paper we focus only on the
speech generation component of such a system. We assume
that the phonetic transcription of the speech to be generated,
as well as the prosodic information (pitch and magnitude
contours as well as phone durations) are known. The text
and linguistic analysis required to derive this prosodic in-
formation from a textual representation does not fall within
the scope of this work.

The speech generation component shown in Figure 1 is
represented in greater detail by Figure 2. The linear-
prediction (LP) vocal tract model mimics the effect which
the continually-changinggeometry of the human vocal tract
has on the resulting speech sound. Different sets of LP co-

different sounds. The excitation model accounts for the
action of the vocal chords. For voiced sounds, the vocal
chords vibrate and hence the excitation has a dominant peri-
odic component. For unvoiced sounds, there is no vibration
and the excitation becomes a stochastic process, usually ap-
proximated by Gaussian noise. Sounds with partial voicing
can be represented by a combination of these two extremes.

linguistic

Text and

analysis Phone sequence

Speech

generation

Text Speech
Magnitude

Pitch

Duration

Prosody

Figure 1: The general structure of a TTS system.
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Figure 2: Structure of the speech generation system.

In our current system, each monophone is represented by
a single set of 30 LPCs, which model the vocal tract dur-
ing the production of the sound, as well as set of three pa-
rameters describing the accompanying excitation. These
parameters are all estimated automatically from record-

a sequence of monophones, is synthesised by generating
smooth parameter trajectories between consecutive mono-
phone vectors using an interpolation algorithm.

3. VOCAL TRACT FILTER MODELLING

the speech generation system. Line spectral frequencies
(LSFs) [7] were chosen as parameterisation for the mono-

stable behaviour in the transition regions between phones
makes them well-suited for interpolation [8]. For ex-

LSFs as calculated during the production of the phonetic
sequence /ep/ /f/ /sw/ /s/ /sw/ as occurs within the
word “ t”. A table of phone symbols appears in Ap-
pendix A.

The monophone units used by our speech generation sys-
temmodel only the approximately stationary characteristics
of each phone. While systems based on context-dependent
units such as diphones model the transitions between suc-
cessive phones implicitly, our reliance upon monophones
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requires these co-articulatory effects to be accounted for ex-

B-spline curves has been developed. This algorithm esti-
mates the values of LSFs in the transition regions between
monophones of the synthetic utterance.

A B-spline curve is a method that calculates interpolated
values from a set of target points, denoted by such
that . The driving concept behind the in-
terpolation is that each interpolated point for

is calculated as a weighted contribution of its sur-
rounding target points. The nearest target point has the
greatest effect on to ensure that it follows the gen-
eral trend of the sequence . For the purpose
of LSF interpolation between monophones, each LSF’s tra-
jectory is modelled by a single B-spline curve such that the
th LSF value, which corresponds to the th phone in a
particular sequence, is equal to . This implies that the
smooth curve represents the LSF transitions at each
point where . To ensure that forms a smooth

tinuous function (known as the basis function) of the
distance so that is a maximum when

and decreases as increases. A polynomial
approximation of the Gaussian function is normally used
for this purpose, and spans thereby limiting
the number of contributing target points to or . How-
ever, we have used the following sigmoidal basis function

to ensure that the interpolated curve gradient is
close to zero at each target point. This allows the duration
of the transition regions to be scaled without introducing
audible discontinuities at the target points.

otherwise
(1)

polation algorithm were made. Firstly, “phantom” target
points were introduced at and to ensure that

are zero. Secondly, a
transformation was applied to the entire set of target points
to ensure that passes through each . These two
steps are summarised by Equation 2.

(2)

Here denotes the inverse of the
transformation matrix

...
...

...
. . .

...
...

...
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where = and is a vector including the
target points:

...

while is a vector containing the transformed target
points.

...

ues of the constant introduced in Equation 1 lead to more
abrupt transitions. Values greater than approximately
ensure that the gradient of the interpolated curve is almost
zero at each target point. Consequently, a value of
was used in all further experiments.

The duration of the inter-phone transitions can be controlled
by sampling at evenly spaced values of in the tran-
sition between a predecessor phone (occurring at )
and its successor (occurring at ). Hence
the developed LSF interpolation algorithm requires only
the sequence of LSF vectors corresponding to the phones

by sampling according to the desired durations of the
phones and the inter-phone transitions. Figure 5 shows the
time-varying measurements of the rd LSF within the pho-
netic sequence /ep/ /f/ /sw/ /s/ /sw/ together with the
interpolated curve passing through the target values.

t

p
(t
)

Mk

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.50.5

A����
A���
A���

r

various values of

Time (frames)

L
S

F
 v

a
lu

e
 (

ra
d

ia
n

s
)

/ep/

/sw/ /s/ /sw/

200 400 600 800 1000 1200

Interpolated LSF curve

Measured LSF curve

Start/end of transition

0.1

0.2

0.3

0.4

/f/

Figure 5: Measured and interpolated rd LSF angles within

t”. One frame is extracted approximately

every 0.5ms, each frame has a length of 50ms, and the sam-

pling rate is . The boundaries of the transition re-

gions are indicated by “ ” markers.

Overall, the synthetic transitions are fairly similar to the
measured transitions, which indicates that the presented B-
spline interpolation algorithm is suitable for modelling the
LSF inter-phone transitions.

4. EXCITATION MODELLING

Our excitation model is based on the Harmonic plus Noise
Model (HNM) of speech, in which the speech signal is de-

component, similar to the one described in [12]. While the
HNM is typically used as a complete speech signal model,
we apply it only to the excitation signal. Figure 6 illustrates
the measured excitation spectra of three different sounds:

mixed voicing. In each case the excitation signals were ob-

The periodic nature of the voiced excitation is immediately
evident in the form of a clear band of harmonics between
0Hz and approximately 4kHz. For mixed-voicing, this band
is narrower, and for the unvoiced sound absent altogether.
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Figure 6: Excitation spectra of three speech sounds: (a) the

vowel /ep long/, (b) the unvoiced fricative /f/ and (c) the

voiced fricative /z/.
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which is characteristic of the stochastic component present
to a certain degree in all speech signals. For the unvoiced
sound, this stochastic band extends over the entire spec-
trum. For the other two signals, the spectrum may be ap-

will term the harmonic cutoff frequency and denote by
. Hence our our model divides the excitation spec-

trum into a lower voiced band and an upper unvoiced band,
which meet at the frequency
as follows.

(3)

The quantity denotes the harmonic component of the
excitation, and is expressed as:

(4)

where is the phase of the th harmonic and is given
by:

Here is the time-varying number of harmonics as de-
termined by the pitch and the frequency ,
while is the amplitude of the th harmonic. In our
system, the additive noise component is modelled sim-
ply by Gaussian white noise and is therefore not strictly
limited to the upper band. A future improvement may be to

component in the voiced band.

The sinusoidal voicing model allows us to control the
frequency envelope of the excitation signal’s harmonics
by specifying the
which is spectrally similar to the recorded speech units. It
was however considered impractical to estimate all the har-
monic amplitudes due to their large number and their
dependence on the time-varying and . In-
stead, we approximate the voiced portion of the excitation
spectrum by introducing for each monophone a linear har-
monic frequency envelope. This envelope decays linearly
from at frequency to at

frequency and thereby approximates the amplitude
of each harmonic in the voiced band by means of the two
parameters and .

4.1. Estimating

We now require a method for determining the harmonic cut-
off frequency for a particular monophone. In order to
estimate the balance between periodic and stochastic com-
ponents in a speech signal, the autocorrelation sequence of
the estimated excitation signal is often used. The autocor-
relation is a measure of a signal’s periodicity, and hence
can be used to estimate a speech signal’s degree of voicing.
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Figure 7: Histograms for the measured excitation spectra of

the two unvoiced phones /f/ and /sh/.

Other proposed methods include the use of spectral tilt [10]
and correlation-based estimates within different frequency
bands [13].

Our estimation procedure is based on the observation that
the samples of an excitation signal’s spectrum have an
approximately Gaussian distribution within the unvoiced
band, but are non-Gaussian withing the voiced band. This
is illustrated in Figure 7, which shows the distribution of
the spectral values for two unvoiced sounds, and in Fig-
ure 8, which compares the distribution of the spectral sam-
ples from within the voiced and the unvoiced bands respec-
tively of the same voiced fricative. Within the voicing band,
the distribution is more highly peaked andmay be described
as super-Gaussian.
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voiced phone /dh/ (as used in “this”).
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Hence, in order to estimate the cutoff frequency we
will measure the “Gaussianity”of the excitation spectrum,
by which we mean the degree to which this signal’s distri-
bution approaches that of Gaussian data.

To measure Gaussianity, we have developed an expectation-
based measure which we have found to be more computa-

tosis [6, 11]. Consider a Gaussian random variable with
mean and variance . The probability den-
sity function (PDF) of then has the form:

The expected value of this PDF for a zero mean, unity vari-
ance Gaussian random variable may therefore be calculated
as:

(5)

where we have used properties of the error function

erf . We can now quantify the Gaus-

sianity of an excitation signal by estimating the ex-
pected value of :

(6)

where are the normalised excitation spec-

trum samples. Because samples drawn from the unvoiced
band of an excitation spectrum have an approximately
Gaussian distribution, we expect to be close to .

In contrast, higher values of should be observed for
samples drawn from voiced or partially-voiced bands of an
excitation spectrum, since their distribution is more highly
peaked than Gaussian.

In order to estimate for a given excitation signal, we
will measure how its Gaussianity changes with frequency.

beyond which
we can assume the harmonic content to be zero. Figure 9
shows the variation of as a function of frequency for
the excitation signals obtained for of the nasal sound /nj/
(as found in “thing”) and the voiced fricative /zh/ (as found
in “genre”). Each value was computed by averaging
the estimates obtained for the real and imaginary spectral
components within a window of the spectrum cen-

subsequently applied to the sequence of values. The
curve that occur

due to the stochastic nature of the spectral estimates. The
curves are not shown,

since these fall outside of the window.
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As shown in Figure 9, the value of for an excitation
signal of a sound that contains voicing exhibits an approxi-
mately exponential decay over frequency. In particular, the
graphs tend to the theoretical value found in Equation 5 of

for Gaussian data associated with the pa-

rameter
ponential curve to the graph, as also shown in Figure 9.
Experimentally, it was found that the intersection of this
curve with the threshold value of gives a good es-
timate of the boundary between the voiced and unvoiced
bands . As illustrated in Figure 9, using this threshold
results in for /nj/ and
for /zh/. These values correspond approximately to the fre-
quencies at which the harmonics are no longer discernible
in the spectra of these sounds, as shown in Figure 6. Fig-
ure 10 shows examples of corresponding excitation spectra
synthesised using the methods described in this section and
application of Equations 3 and 4.

4.2. Excitation Parameter Interpolation

Initial experiments applied the same interpolation scheme
described in Section 3 to the excitation signal parameters.
However, co-articulation appears to be more relevant to the
vocal tract movements than to the excitation signal, because
the movement of the oral cavity is more physically limited
than that of the glottis. For this reason the source signal pa-
rameters were allowed to vary more abruptly than the vocal
tract parameters. According to [1], is a suitable dura-
tion for the source signal parameter transitions of most pho-
netic combinations. For more natural speech output, how-
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Figure 10: Synthetic excitation spectra for the three speech

sounds analysed in Figure 6.

than , the source signal parameter transition duration

The particular interpolation algorithm used to generate the
source signal parameter transitions was found during infor-
mal listening tests to be of little perceptual importance. It is
suspected that the window is short enough to make it

a-
rameters. Interpolation was accomplished using a scaled
and offset half period of a cosine function to ensure the
smooth excitation parameter transition. Figure 11 shows
the interpolated curves of the parameters (unvoiced
magnitude) and (voiced magnitude) for the Afrikaans
name “Hansie”. For clarity, (which is interpolated in
the same way) is not shown.

5. EVALUATION AND RESULTS

A set of high quality recordings was made for each of the
47 South African English monophones described in Ap-
pendix A. Recording took place in a quiet room using a
high quality microphone connected to a personal computer
via an external audio capture device sampling at 24kHz. A
total of LPC’s were estimated for each sound using the
Levinson-Durbin algorithm. The frequency was esti-
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Figure 12: Spectrograms for the sentence “The time ran

with the high head.”. The natural speech is shown above

and the synthetic reproduction below.

mated for each sound according to the procedure described
in Section 4.1.

Figure 12 shows the spectrograms of a recorded sentence
and its synthetic reproduction as used during the system’s
evaluation in Section 5.2. The prosodic contours used in the
synthetic sentence were estimated from the original record-
ing, but the monophone models were obtained indepen-
dently. The degree of voicing and the frequency band de-

of the synthetic sentence is very similar to
that of the natural reference. The only clear exception to

a voiced plosive. Voiced plosive sounds were found to be
modelled poorly by our current system, due to their highly
non-stationary nature, and an improved strategy for such
sounds is an important aspect of ongoing work. The for-
mant trajectories of the two spectrograms are similar, al-
though it appears that the durations were not accurately es-

in the case of the synthetic utterance than for the natural
reference.

The primary objective of the speech generation system de-
veloped in this paper has been the production of intelligible
speech, and little attention has been given to the modelling
of prosody. Hence, only intelligibility tests have been car-

rhyme test (MRT) and semantically unpredictable sentence
(SUS) speech intelligibility tests for this purpose [2, 5]. The
incorporation of prosodic modelling for improved natural-
ness will include the development of a text- and linguistic
analysis front-end as shown in Figure 1, and remains the
subject of ongoing work.

The tests were administered in a laboratory where, on av-
erage, 10–15 people were present at any given time. Back-
ground noise was therefore not eliminated, but it was not

ing high quality headphones connected to a personal com-
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linear 16-bit PCM encoding and were played at a sampling
rate of . Among the 25 listeners, 23 were male and
2 were female, with ages ranging between 20 and 40. There
were 19 non-native South African English speakers among
the listeners, and only 3 indicated that they hear synthetic
speech on a regular basis.

A simple graphical user interface (GUI) was developed in
order to ease the test procedure. After some general in-
formation regarding the tests, each listener was presented

instructions were shown immediately before each test.

5.1. MRT Results

gibility of a speech synthesiser by measuring the confuse-

thetic speech [5]. The test consists of 50 sets each con-
taining 6 words. In 25 of these sets, only the word-initial
consonant varies, as for example in the set “
wit, sit
sonant varies. During execution of the MRT, the 50 sets are
processed in random order. For each set, a single word is
played to the test subject, who must identify it from a list of
all six words.

In order to generate the complete set of 300 MRT words,
each word was manually transcribed to a phonetic repre-

common phonetic segments in each of the 50 ensembles.

cording to a simple set of rules. This procedure was not
optimised and therefore possibly not ideal. All words were
synthesised at the same magnitude level and a pitch curve
was randomly selected for each instance from a set of ten
curves previously estimated and manually corrected from
recordings of MRT words. The pitch curves were chosen
to be similar in an effort to prevent listener bias toward any
particular one. The procedure described in [5] was followed
for the test presentation, except that the listeners’ responses
were logged automatically, rather than making use of an-
swer sheets.

Table I: System performance for various word subsets ac-

cording to MRT scores.

Subset of MRT words Number Correct

of words

All words 1200 67.67%

Voiced plosives omitted 817 73.81%

Approximants omitted 910 68.57%

Both of the above omitted 596 75.00%

Table I summarises the results of the MRT, and shows that
an overall accuracy of 67.67% was achieved. This result
can be viewed in the context of a previous comparative
MRT evaluation, in which 7 formant synthesisers, 1 LPC
synthesiser, 1 segment concatenation synthesiser as well
as natural speech were considered [9]. As one might ex-
pect, the study shows that natural speech yielded the high-
est word accuracies. Although the average accuracy of the

formant synthesisers was 88.55%, their individual accura-
cies ranged from 62.56% to 96.75%. In particular, the per-
formance of our system compares favourably with that of
the tested LPC synthesizer, which exhibited an accuracy of
64.44%.

Also shown in Table I is the percentage of correct words
when all words containing voiced plosives are omitted from
the scoring set. These sounds include /b/ (as used in
“baby”), /d/ (as used in “death”) and /g/ (as in “gun”).

current synthesiser has in modelling voiced plosives. Fur-
ther analysis showed that 174 errors (44.85% of the total
number) occurred in words containing voiced plosives, 131
(33.76%) of which are the result of a voiced plosive being

Some listeners commented that the approximants /rt/ (as in
“red”) and /l/ (as in “legs”) were very unclear. The data
seems to support this statement, as there is a slight increase
in the word accuracy when these sounds are omitted from
the scoring set, although it is less pronounced than in the
case of voiced plosives. Analysis showed that 102 errors
(26.29% of the total number) occurred in words containing
/rt/ or /l/, of which 38 (9.79%) were caused by an incorrect

were selectively omitted from the scoring, but resulted in
only small changes in the word accuracy, and are therefore

the accuracy rises to 75%when all words that contain any of
the problematic sounds (/b/, /d/, /g/, /rt/ and /l/) are omitted
from the test.

5.2. SUS Results

The semantically unpredictable sentence (SUS) test mea-
sures speech intelligibility by presenting the user with syn-
thesised sentences that are syntactically correct but seman-
tically meaningless [2]. An example of a SUS is “Start
the trial and the fund”. On hearing the synthetic utter-
ance, the user is asked to transcribe it, and the accuracy of
this transcription is then used as a measure of intelligibility.
Since the sentences are meaningless, the listener is unable
to make use of contextual information to identify the words.

For our SUS test, only 15 sentences (3 from each syntac-
-

A list of these sentences appears in Appendix B. The sen-

cally transcribed by hand. Phone and transition durations as
well as pitch curves were extracted from each recording for
use in the generation of the corresponding synthetic utter-
ance. A smoothed magnitude envelope was extracted from
the recording and used to normalise the energy envelope of
the corresponding synthetic sentence.

Since the SUS test was performed directly after the MRT,
and because only 15 sentences were generated, it was de-
cided that no listener training is necessary prior to the SUS
tests. Instead, it was assumed that a listener was already
accustomed to the acoustic quality of the synthetic speech.
However in order to prepare the listener to the linguistic ab-
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syntactic structure) which were unrelated to the test sen-
tences at a word-level were displayed before commence-
ment of the test. The 15 test sentences were then presented
according to the procedure detailed in [2].

Table II: System performance according to SUS test scores

as word and at phonetic level.

Test set Accuracy

Words 41.25%

Words (article “the” omitted) 29.14%

Phonetic transcriptions 47.97%

glance, the accuracies appear to be very poor. However,
other studies show that SUS test scores are typically low
even for natural speech [2]. This is attributed to the cogni-

un-
predictable sentences.

Table II shows that the overall word-level accuracy is
41.25%. Also shown is the word-level accuracy for the
sentences when the article “the” was not included in the
scoring procedure. The decreased accuracy when doing so

other words occurring in the sentences. By considering the
phonetic transcriptions of the sentences as well as of the lis-

y
is higher than the word-level accuracy. This indicates that
many of the incorrect word transcriptions were phonetically
similar to the true words.

A French SUS test evaluation comparing natural speech, 3
diphone-based synthesisers and 3 unit selection synthesis-
ers is presented in [3]. The results indicate word accuracies
of between 60% and 75% and phone accuracies of between
70% and 85% for the synthesizers. Natural speech yielded
the best results, with word and phone accuracies both ap-
proximately 90%.

Word-level and phonetic accuracies for each of the sen-
tences individually were also measured because some lis-
teners commented that the longer sentences proved more

tained seem to support this. When omitting the longer syn-

accuracy climbs to 48.77% and the phonetic accuracy to
55.34%.

6. SUMMARY AND CONCLUSIONS

The speech generation system that has been described in
this paper is intended to allow rapid development of speech
synthesis systems in under-resourced languages. The sys-
tem is based on monophone units, and makes use of a novel
interpolation algorithm to synthesis realistic transitions be-
tween these context independent units. In addition, a sim-
ple excitation model is developed, which allows estimation
and modelling of the harmonic and stochastic content of

an excitation signal. Compared to concatenative synthesis-
ers, which represent the current commercial state-of-the-
art, the amount of transcribed speech data required for the
proposed system is minimal. Added associated advantages
are a small memory requirement and fairly low computa-
tional load.

Even without a text preprocessing front-end, results of the
evaluation of the system in South African English show that
the synthetic speech generated by this system is moderately
intelligible. Further attention will have to be given to highly
non-stationary sounds, especially voiced plosives, which
were found to be synthesised poorly. Since only the speech

to
directly compare these results with other synthesisers.
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APPENDIX A: PHONE INVENTORY

The following table describes the South African English
phones used by the speech generation system. An example
of a word in which the phoneme occurs in each language
is given in each case. If this example appears in italics, it
indicates that the word has been borrowed from a different
language.

DESCRIPTION LABEL EXAMPLE

Stops

Voiceless Bilabial Plosive p pit

Voiced Bilabial Plosive b baby

Voiceless Alveolar Plosive t total

Voiced Alveolar Plosive d death

Voiceless Velar Plosive k kick

Voiced Velar Plosive g gun

Fricatives

Voiceless Labiodental Fricative f four

Voiced Labiodental Fricative v vat

Voiceless Dental Fricative th thing

Voiced Dental Fricative dh this

Voiceless Alveolar Fricative s some

Voiced Alveolar Fricative z zero

Voiceless Post-Alveolar Fricative sh shine

Voiced Post-Alveolar Fricative zh genre

Voiceless Velar Fricative x Gauteng

Voiceless Glottal Fricative h hand

Voiced Glottal Fricative hht Johannes

Approximants

Alveolar Approximant rt red

Alveolar Lateral Approximant l legs

Palatal Approximant j yes

Voiced labio-velar Approximant w west

Nasals

Bilabial Nasal m man

Alveolar Nasal n not

Velar Nasal nj thing

Vowels

High Front Vowel i Piet

High Front Vowel with duration i long keep

Lax Front Vowel ic him

High Back Vowel u Kapkaroord

High Back Vowel with duration u long blue

Lax Back Vowel hs push

Mid-high Front Vowel with dura-

tion

e long Vrede

Rounded Mid-high Back Vowel o long Sibongile

Mid-low Front Vowel ep nest

Mid-low Front Vowel with duration ep long fairy

Rounded Mid-low Front Vowel oe nurse

Rounded Mid-low Front Vowel

with duration

oe long burst

Central Vowel with duration epr long turn

Rounded Mid-low Back Vowel ct Hartenbos

Rounded Mid-low Back Vowel with

duration

ct long bore

Low Back Vowel ab hot

Lax Mid-low Vowel vt hut

Low Central Vowel a Garsfontein

Low Central Vowel with duration a long Klerksdorp

Low Back Vowel with duration as long harp

Central Vowel (Schwa) sw the

Mid-low Front Vowel ae average

Mid-low Front Vowel with duration ae long dad

APPENDIX B: SUS SENTENCES

The following table lists the 15 semantically unpredictable
sentences (SUS) that were employed during the perceptual
tests.

Structure Sentence

(1) The state went at the hot point.

The school stayed for the new tube.

The time ran with the high head.

(2) The poor sense hit the tax.

The thin job got the voice.

(3) Start the trial and the fund.

Call the game and the front.

Live the plant or the test.

(4) When does the dog lead the hard set?

Why does the sign learn the green bed?

How does the chance plan the cold roof?

(5) The song marked the branch that burned.

The truth helped the leg that failed.

The top drew the pool that died.


