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Abstract
Voice activity detection (VAD) is the task of distinguishing
speech from other types of audio signals, such as music or
background noise. We introduce a novel end-to-end VAD ar-
chitecture which incorporates a pre-trained transformer model
(Wav2Vec2-XLS-R). We evaluate the proposed architecture on
an established VAD dataset, AVA-Speech, and a manually-
segmented corpus of under-resourced multilingual speech. As
benchmarks, we include a hybrid CNN-BiLSTM system and
an off-the-shelf enterprise VAD. On the AVA-Speech test set,
our proposed VAD achieves an area under the curve (AUC) of
96.2% while the benchmarks achieve 94.8% and 81.9% respec-
tively. On the multilingual dataset, the gap widens to 92.2% for
the transformer-based VAD and 80.8% and 74.6% for the two
baselines. Therefore, the proposed VAD offers improved per-
formance in all cases, with an absolute increase of more than
11% for our target domain. We conclude that the proposed end-
to-end architecture improves VAD performance.
Index Terms: VAD, transformer, multilingual speech

1. Introduction
The process of determining which parts of an audio stream are
speech and which are not is known as voice activity detec-
tion (VAD). Real-world speech signals are often embedded in
background noise or other interference, such as music. There-
fore, several practical voice processing tasks, such as automatic
speech recognition (ASR), speaker identification and speech en-
hancement, require reliable and accurate VAD as a preprocess-
ing step. Our own eventual objective is to automatically and
accurately determine segments of clean speech, for subsequent
manual annotation, within a multilingual audio stream in under-
resourced languages. Currently this segmentation is achieved
manually, a process which has shown itself to be both slow and
cumbersome.

Early approaches to VAD simply used an energy thresh-
old to identify speech [1]. The addition of a hangover period
helped to reduce speech truncation, while the application of
adaptive thresholds to different temporal and spectral aspects of
the signal enhanced the accuracy of this simple approach [2, 3].
For example, the discrete Fourier transform (DFT) coefficients
of speech and noise can be modelled as asymptotically inde-
pendent Gaussian random variables [4]. VAD is then accom-
plished using a likelihood ratio test in conjunction with an
HMM hangover model. This work has served as the founda-
tion for several related techniques that employ different signal
characteristics [5, 6] or distributions [7, 8] or decision proce-
dures [9]. However, these model-based approaches were not
effective when faced with challenging non-speech interference,
such as music.

Recently, machine learning-based systems have achieved
state-of-the-art VAD performance. Classifiers can be trained
to distinguish between speech and non-speech frames by ap-
proaching VAD as a frame-based classification problem. Sup-
port vector machine classifiers have for example been utilised
successfully in this way [10, 11, 12, 13]. More recently, neural
network architectures have been used instead [14, 15, 16, 17].

Our requirement for VAD is as a preprocessing step in the
development of ASR and word spotting in a highly resource-
constrained environment [18]. The speech of interest is typi-
cally spontaneous, multilingual and in languages for which very
few or even no resources exist. This scenario was addressed in
recent work which proposes a hybrid CNN-BiLSTM structure
and demonstrates state-of-the-art VAD performance [19]. How-
ever, when applied to our under-resourced target domain, we
found that this architecture is not able to identify clean speech
with sufficient accuracy.

In this paper, we propose a VAD architecture that incorpo-
rates a large pre-trained transformer model, namely Wav2Vec2-
XLS-R [20]. In this way, advantage is taken of the very large
multilingual dataset used to train this neural network model.
We will show that the resulting VAD offers improved perfor-
mance on two datasets relative to two benchmarks, a hybrid
CNN-BiLSTM and SileroVAD, an off-the-shelf enterprise VAD
implementation [21].

The remainder of this paper is structured as follows. Sec-
tion 2 provides information on the datasets that we utilise. Our
methodology is presented in Section 3. The resulting analysis
of the proposed VAD framework is discussed in Section 4, and
in Section 5 we present our concluding remarks.

2. Datasets
We will evaluate VAD performance on two datasets. AVA-
Speech is a publicly-accessible dataset developed specifically
for VAD benchmarking. In addition, we consider a corpus of
manually segmented speech from 48 episodes of South African
soap operas, this under-resourced dataset resembles the target
application for a voice activity detection system, from which
we would aim to automatically obtain segments of speech.

2.1. AVA Speech dataset

This dataset comprises 40 hours of labelled audio data ex-
tracted from 160 movies found on YouTube. Approximately
15 minutes audio from each movie is labelled using the follow-
ing four mutually-exclusive classes to identify sequential seg-
ments: ”Clean-Speech”, ”Speech+Music”, ”Speech+Noise”,
and ”Non-Speech” [22]. AVA-Speech includes a wide range
of languages, acoustic settings and speakers. Moreover, film
audio can be viewed as representative of broadcast media, set-



ting it apart from more carefully curated and therefore artificial
datasets that are often used for VAD testing and development.
AVA-Speech contains approximately equal amounts of speech
and non-speech data, with the majority of the speech data being
noisy. Of the 40 hours of data, we will utilise 4.25 hours for val-
idation, 4.25 hours for testing, and the remainder for training.
Table 1 summarises the statistics of the AVA-Speech dataset.

Table 1: Statistics of the AVA-Speech dataset

Label Average Segments Time
duration (sec) (%) (%)

Clean-Speech 2.97 16.68 14.55
Speech+Noise 3.28 25.41 24.32
Speech+Music 3.43 13.33 13.46
Non-Speech 3.68 44.57 47.68

2.2. South African soap opera dataset

As a second dataset, we use a collection of 48 manually-
segmented episodes of South African soap operas, also col-
lected from YouTube. The speech in this data has been re-
ported to be highly multilingual and spontaneous, making it a
challenging and representative test scenario for our VAD, since
our objective is to apply it to under-resourced languages in
Africa [17, 23]. Our data consists of entire episodes, each on av-
erage 24 minutes long. We utilise 22 episodes for training, six
for development, and 20 for testing, constituting 8.86h, 2.44h
and 8.15h of audio respectively. The statistics for this dataset
are summarised in Table 2.

Our over-arching objective is to automatically identify seg-
ments of clean speech within a multilingual under-resourced
audio stream that can be used for subsequent manual annota-
tion, Therefore, the audio in this corpus has been delineated
into two mutually exclusive classes, namely ”Clean-Speech”
and ”Other”. This means that the classes ”Non-Speech”,
”Speech+Music” and ”Speech+Noise” used in the AVA-Speech
dataset all correspond to ”Other” in this dataset.

By comparing Tables 1 and 2 it is clear that the soap opera
dataset contains a similar ratio of clean speech to other audio
as the AVA-Speech dataset. However, the average duration’s
of these segments are substantially different. This is a conse-
quence of the segmentation process, in which short clean speech
segments are typically surrounded by much longer segments of
non-clean speech.

We note that the VAD task for AVA-Speech requires the
processing of 15 to 30 minute long segments extracted from
movies to be processed, the soap opera data requires entire
episodes to be processed without any pre-processing. This, for
example, includes the title and credit sequences.

Table 2: Statistics of South African soap opera corpus

Label Average Segments Time
duration (sec) (%) (%)

Clean-Speech 4.16 49.38 11.27
Other 31.95 50.62 88.73

3. Methodology
Our proposed VAD architecture is shown in Figure 1. The end-
to-end transformer model, Wav2Vec2-XLS-R, has been pre-
trained on 436k hours of unlabelled speech drawn from the
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Figure 1: Structure of Wav2Vec2 voice activity detection system.
Feature vectors from Wav2Vec2 are passed to average pooling
layer in groups of five, which is then passed to a two layer lin-
ear model with a GeLU activation function, the final layer has
dimensionality of one or four.
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speech corpora, which encompass 128 languages [20]. Ex-
cept for English, only one of the target languages for our
South African dataset forms part of the XLS-R training dataset,
namely isiZulu, and constitutes only 56 hours of data.

The transformer model receives the raw audio samples as
input. Because the computational complexity of the transformer
model is proportional to the square of the length of the input se-
quence, we divide the input audio into fixed 20 second long
windows with no overlap. Given a 20 second sequence of au-
dio samples, the transformer model produces, as output, a se-
quence of hidden states, each corresponding to 25ms of audio,
with a stride of approximately 20ms. For our application, we
regard a speech boundary placed within 105ms of the reference
boundary as satisfactorily accurate. Therefore, we pool the out-
put hidden states produced by the transformer into groups of
five, producing one 768-dimensional vector approximately ev-
ery 105ms. These are passed though a dense layer with GELU
activations and an output dimensionality half of its input (384).
Finally, the GELU outputs are passed through a softmax with ei-
ther two outputs (corresponding to the classes ”Clean-Speech,”
and ”Other”) or four outputs (corresponding to ”Clean-Speech”,
”Speech+Music”, ”Speech+Noise” and ”Non-Speech”). Target
training labels are derived from the labels in the AVA-Speech
and soap opera datasets by determining the class that describes
the largest proportion of the frame being classified.

This architecture is fine-tuned utilising cross-entropy. We
use a batch size of 16 and a peak learning rate of 5 ·10−5 which
warms up linearly for the first 10% of training steps and then lin-
early cools to zero by the end of training. Each model is trained
for 16 epochs, during which the CNN feature-extractor layers



are frozen, while the transformer layers and final classification
layers are trained.

3.1. Baselines

We employ two baseline VAD architectures as benchmarks.
First, we include a hybrid CNN-BiLSTM system which
provides state-of-the-art performance on the AVA-Speech
dataset [19]. Second, we include the Silero VAD, an off-the-
shelf enterprise-grade system [21]. This model has been trained
on a large undisclosed corpus containing over 100 languages,
and is reported to achieve a 90% AUC on four hours of speech
sampled from the AVA- speech dataset.

The baseline CNN-BiLSTM was trained from a random ini-
tialisation for 24 epochs with a batch size of 64. The structure of
the model is the same as the best architecture presented in [19].
This model produces a frame level output every 320ms.

4. Results
The results for two-class and four-class classification are pre-
sented separately below.

4.1. Two-class VAD

This section presents and analysis of classifier performance
when these are trained to distinguish between the two
classes ”Clean-Speech” and ”Other”. In the case of AVA-
Speech, this means that ”Speech+Music”, ”Speech+Noise”, and
”Non+Speech” are all regarded as ”Other”.

4.1.1. AVA-Speech data

Figure 2 presents the ROC curve for the fine-tuned transformer
VAD, the CNN-BiLSTM VAD, and the Silero VAD, for the
AVA-Speech development and test sets. Note that only the
CNN-BiLSTM and transformer VADs are trained on the AVA-
Speech training set, while the Silero VAD is used as-is. In con-
trast to the BiLSTM VAD trained in [19], here we select only
clean speech as the positive class, as it better represents for our
eventual goal of isolating speech for manual transcription. The
CNN-BiLSTM model achieves an area under the ROC curve of
93.7% and 94.8% on the development and test sets respectively.
The transformer model improves on this, achieving an AUCs of
95.0% and 96.2% respectively. Both the CNN-BiLSTM and the
transformer models outperform the Silero VAD, which achieves
AUCs of 83.9% and 81.9% on the development and test sets re-
spectively. We hypothesise that this model performs slightly
worse than the reported 90% because here our positive class is
defined to only include clean-speech.

Table 3: AVA speech voice activity detection results for the de-
velopment (Dev) and test sets. AUC: Area under ROC curve,
TPR: True positive rate, FPR: False positive rate.

Model AUC TPR @ FPR 10%
Dev Test Dev Test

Wav2Vec2-XLS-R 95.0% 96.2% 88.0% 88.9%
CNN-BiLSTM 93.7% 94.8% 76.7& 84.4%
Silero 83.9% 81.9% 48.4% 26.5%

Our aim is to use the VAD to isolate segments of clean
multilingual speech that can be passed to a human transcriber.
The goal is to minimise human effort, and therefore false posi-
tives, where non-speech or noisy speech are labelled as clean
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Figure 2: AVA-Speech corpus development and test set ROC
curves for Wav2Vec2, CNN-BiLSTM and Silero VAD.

speech, are to be avoided because they would require man-
ual re-adjustment of the segment boundaries. The fine-tuned
Wav2Vec2 model, as seen in Table 3, shows better performance
than both the LSTM model and the off-the-shelf VAD, offering
a 4.5% and 62.4% absolute test set improvement in true positive
rate at a false positive rate of 10% respectively.

4.1.2. Soap opera speech data

Table 4: Soap opera voice activity detection results for the de-
velopment (Dev) and test sets. AUC: Area under ROC curve,
TPR: True positive rate, FPR: False positive rate.

Model AUC TPR @ FPR 10%
Dev Test Dev Test

Wav2Vec2-XLS-R 93.3% 92.2% 75.6% 71.6%
CNN-BiLSTM 82.3% 80.8% 46.0% 39.8%

Silero 74.1% 74.6% 32.3% 28.0%

In Figure 3 and Table 4 we present the performance of
the same three models when applied to the soap opera dataset.
We see that, again, the transformer VAD outperforms the two
baselines, this time by a larger margin. Although the AUC of
CNN-BiLSTM model deteriorates by 14.0% absolute on the test
set for the under-resourced soap opera dataset, the Wav2Vec2
model only deteriorates by 4.0%. It would appear, therefore,
that the Wav2Vec2 model is more robust to the detection of
clean speech in multilingual low-resource datasets.

Again, our over-arching objective is to isolate segments of
clean multilingual speech that can be passed to a human tran-
scriber. When considering the true positive rate (TPR) at a
false positive rate of 10% the performance gap between the
Wav2Vec2 model and the two baseline again widens. The
Wav2Vec2 model is able to identify 71.6% of the clean speech
from the test set while 10% of the negative class is incorrectly
classified as clean speech. In contrast, at the same FPR the
CNN-BiLSTM model is only able to identify 39.8% of the
clean-speech from the test set, and the Silero VAD system only
28.0%. Thus the transformer model affords an absolute im-
provement over the CNN-BiLSTM model of 29.6% absolute.
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Figure 3: Soap opera corpus development and test set ROC
curves for Wav2Vec2, CNN-BiLSTM and Silero VAD.

Table 5: Comparison of number of model parameters and
throughput (Seconds of audio processed per second).

Model Throughput (s/s) Parameters (Millions)

Wav2Vec2-XLS-R 113.1 316
CNN-BiLSTM 164.6 0.552

Silero 37.5 0.180

In Table 5 we compare the runtime performance of the three
considered models. This performance is denoted as through-
put, which is the seconds of input audio processed per second
and is the inverse of real-time factor (RTF). We estimate this
value by measuring the wall-time during the segmentation of
the entire Soap Opera test set (8.15h). We find that the CNN-
BiLSTM model achieves the highest throughput. However, al-
though Wav2Vec2 contains 572x more parameters, the reduc-
tion in throughput is only 31.3% slower relative to the BiLSTM
model. This is because the transformer architecture can pro-
cess entire audio segments simultaneously, while the LSTM ar-
chitecture must process the input in a recurrent fashion. We
find that the Silero model performance is the worst of the three
models, which is consistent with the performance reported by
the authors (36 s/s).1.

4.2. Four-class VAD

To further investigate the effectiveness of our proposed VAD
architecture, we train both the transformer as well as the CNN-
BiLSTM models to classify all four classes labelled in the AVA-
Speech dataset, namely: ”Clean-Speech”, ”Speech+Music”,
”Speech+Noise” and ”Non-Speech”. Figure 4 presents the con-
fusion matrices for the two VAD approaches, computed on the
test set. The figure shows that the transformer VAD is better
able to separate all four classes than the CNN-BiLSTM model.
For example, it is able to correctly identify 70.1% of the clean
speech, while the CNN-BiLSTM experiences a higher confu-
sion between the clean speech and especially speech with mu-
sic. In addition to this, the Wav2Vec2 model more effectively

1However, utilising third-party libraries such as ONNX a consider-
ably improved throughput of 158s/s can be achieved.

distinguishes Speech+Noise from the other three classes, while
the CNN-BiLSTM misclassifies a large proportion (31.0%) of
speech with noise as speech with music. Overall the transformer
VAD more robustly delineates the four environmental condi-
tions.
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Figure 4: Confusion matrix results for the AVA-Speech test set
when the proposed transformer-based VAD and the baseline
CNN-BiLSTM VAD are trained to classify all four classes. Re-
sults are given as percentages (%) and are normalised row-
wise.

5. Conclusions
In this work we have introduced a novel transformer architec-
ture for voice activity detection (VAD) that incorporates the
pre-trained Wav2Vec2-XLS-R model. The approach is demon-
strated to offer consistent performance over two baselines on for
both the AVA speech corpus and a dataset composed of com-
plete multilingual soap opera episodes. The proposed architec-
ture achieves test set AUCs of 96.2% and 92.2% on the AVA and
soap opera datasets respectively, in both cases but especially for
the latter corpus improving on both baselines. Furthermore, it is
shown to substantially improve the true positive rate at a fixed
low false positive rate relative to both baselines. This leads to a
reduction in the required manual adjustment of the clean speech
segment boundaries, while maintaining a high yield of clean
speech, indicating that the proposed VAD is well-suited to the
task of isolating speech for subsequent manual transcription.
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