
Optimised Code-Switched Language
Model Data Augmentation in Four
Under-Resourced South African

Languages

Joshua Jansen van Vueren(B) and Thomas Niesler

Department of Electrical and Electronic Engineering, Stellenbosch University,
Stellenbosch, South Africa

{jjvanvueren,trn}@sun.ac.za

Abstract. Code-switching in South African languages is common but
data for language modelling remains extremely scarce. We present tech-
niques that allow recurrent neural networks (LSTMs) to be better applied
as generative models to the task of producing artificial code-switched
text that can be used to augment the small training sets. We propose the
application of prompting to favour the generation of sentences with intra-
sentential language switches, and introduce an extensive LSTM hyper-
parameter search that specifically optimises the utility of the artificially
generated code-switched text. We use these strategies to generate artifi-
cial code-switched text for four under-resourced South African languages
and evaluate the utility of this additional data for language modelling.
We find that the optimised models are able to generate text that leads
to consistent perplexity and word error rate improvements for all four
language pairs, especially at language switches. This is an improvement
on previous work using the same speech data in which text generated
without such optimisation did not provide improved performance. We
conclude that prompting and targeted hyperparameter optimisation are
an effective means of improving language model data augmentation for
code-switched speech recognition.

Keywords: Code-switching · Language model data augmentation ·
LSTM · Speech recognition · Under-resourced languages · African
languages · Bantu languages

1 Introduction

Code-switching is the use of more than one language within and between sen-
tences, a phenomenon that is pervasive in multilingual countries such as South
Africa. Language switches are known to occur on the intra-word (prefix/suffix),
word (insertional), and phrase (alternational) level [22]. One can further dis-
tinguish between intra-sentential, and inter-sentential switching [7]. Accurate
modelling of code-switching is challenging due to its spontaneous nature and
the severe lack of data.
c© Springer Nature Switzerland AG 2021
A. Karpov and R. Potapova (Eds.): SPECOM 2021, LNAI 12997, pp. 1–14, 2021.
https://doi.org/10.1007/978-3-030-87802-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87802-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-87802-3_28


2 J. Jansen van Vueren and T. Niesler

Various strategies for the augmentation of code-switched data have been
explored and can be categorised as neurally generative and syntactically con-
strained. Generative adversarial networks (GANs), part-of-speech (POS) tags
[5], and hybrid BERT-GAN architectures [9] have been used to generate code-
switched sentences from a monolingual Mandarin corpus either by learning which
words or phrases should be translated into English or by masking tokens one-
by-one in the input sequence. The synthesized datasets were pooled with the
code-switched training sets and used to train RNN and n-gram language mod-
els. Although it was found that the n-gram perplexity worsened, when used in
ASR experiments the performance was slightly improved. The RNN language
model was evaluated solely using perplexity and improved over a baseline result.

In [16], a code-switched corpus is synthesized by aligning and embedding
words and phrases from parallel monolingual English and Mandarin text accord-
ing to the matrix language frame (MLF) theory [17]. A code-switch proba-
bility is assigned to each pair of aligned phrases and used to generate code-
switched sequences for LSTM pre-training. This pre-training improved perplex-
ity, lead to faster convergence, and improved ASR performance in lattice rescor-
ing. Aligned parallel English-Mandarin text was also used in [13] to generate
code-switched sentences that were subsequently fused with data generated by a
pointer-generator neural network. A RNN composed of two LSTMs that sepa-
rately model monolingual segments was shown to reduce perplexity in [10], where
the current language is used as a signal to select the LSTM which models the
next word. In [20] speech synthesized using novel algorithms and code-switched
text generated using equivalence constraint theory (ECT) were incorporated into
the training data, thereby improving English-Hindi ASR performance. With a
similar aim, [24] improved perplexities and word error rates for Dutch-Frisian
code-switching through the augmentation of acoustic and text data. Large arti-
ficial code-switched corpora were generated using an LSTM trained on a small
amount of in-domain code-switched text. Text was also manually translated from
Dutch to Frisian utilising an open-source web-service. Finally, ASR transcrip-
tions were incorporated into the training data. In [23] code-switched bigrams
synthesised using word embeddings were shown to improve both perplexity and
speech recognition performance at language switches. In further work, an LSTM
was used to augment English-isiZulu data, thereby decreasing perplexity [3].

Here, we build on the work described in [2,3,24]. We also train LSTMs on
severely under-resourced code-switched data and then use these to generate arti-
ficial text with which to augment the training set. However, we extend these
approaches by introducing the targeted optimisation of the text generation to
produce sequences with useful code switches. To do this, we apply an extensive
hyperparameter search that optimises text generation quality. Such targeted
hyperparameter optimisation for code-switches has not been reported on before.

The remainder of this paper is organised as follows. Section 2 describes the
datasets utilised for experimentation. Section 3 details the experimental setup
and Sect. 4 presents the results. Finally, Sect. 5 concludes.



Code-Switched Language Model Data Augmentation 3

2 Dataset

This work uses a manually transcribed corpus of code-switched speech compiled
from South Africa soap opera episodes [21]. The speech in this corpus includes
four South African Bantu languages (isiZulu, isiXhosa, Sesotho and Setswana)
as well as English. Table 1 shows the subdivision of the corpus into four bilingual
sub-corpora: English-isiZulu (EZ), English-isiXhosa (EX), English-Sesotho (ES),
and English-Setswana (ET).

Table 1. The soap opera corpus, showing the total number of word tokens, word
types, and code switches in the four bilingual sub-corpora. CSEB indicates the number
of switches from English to a Bantu language, while CSBE indicates switches from
Bantu to English. The final column indicates the duration of the audio data.

Pair Partition English Bantu Total

Tok Typ Tok Typ Tok Typ CSEB CSBE Dur

Train 28033 3608 24350 6788 52383 10396 2236 2743 4.81 h

EZ Dev 832 414 734 452 1566 866 175 198 8.00 min

Test 2457 870 3199 1435 5656 2305 688 776 30.4 min

Train 20324 2630 12215 5086 32539 7716 776 1003 2.68 h

EX Dev 1153 484 1147 762 2300 1246 91 113 13.7 min

Test 1149 498 1502 889 2651 1387 328 363 14.3 min

Train 15395 2255 19825 2086 35197 4339 1565 1719 2.36 h

ES Dev 843 437 2227 614 3067 1050 156 166 12.8 min

Test 1794 659 2265 535 4054 1193 403 396 15.5 min

Train 16180 2361 19570 1448 35725 3808 1885 1951 2.33 h

ET Dev 1170 514 2539 539 3707 1052 224 251 13.8 min

Test 1970 729 2979 526 4939 1254 505 526 17.8 min

All four Bantu languages are agglutinative. Furthermore, isiZulu and isiXhosa
have a conjunctive orthography, leading to larger vocabularies (Table 1) than
Sesotho and Setswana, which have a more disjunctive orthography.

Table 2. Out-of-domain monolingual corpora.

Language English isiZulu isiXhosa Sesotho Setswana

Tokens 471M 3.25M 0.99M 0.23M 2.84M

We also use the five out-of-domain monolingual corpora outlined in Table 2.
This data was gathered from transcriptions of conversations, newspaper reports
and web text [2]. The table shows that, while substantial out-of-domain text
resources are available for English, much less is available than the four under-
resourced Bantu languages.



4 J. Jansen van Vueren and T. Niesler

3 Experimental Strategy

Our generative LSTM [11,12] consists of 3 layers: an embedding layer, an LSTM
layer and a dense layer. Gated recurrent units (GRUs) [6] and dropout [14]
were found to be ineffective in preliminary experiments. Adam [15] was used
for gradient descent and cross entropy as the optimisation criterion. All LSTMs
were implemented using Tensorflow [1], all n-gram language models are trigrams
with Witten-Bell discounting trained using the SRILM toolkit [19].

Speech recognition experiments were performed using KALDI [18] according
to the procedure in [4]. The training procedure is broken into two sections: mul-
tilingual pre-training, and language adaptation. The multilingual pre-training
trains a CNN-TDNN-F acoustic model on the pooled data from all four sub-
corpora as detailed in Table 1. The adaptation phase fine-tunes the pre-trained
CNN-TDNN-F by training for two epochs on the relevant bilingual sub-corpus.

3.1 Metrics

In addition to perplexity (PP), to pinpoint the difficulties encountered at lan-
guage switches, we also consider the code-switched perplexity (CPP) as first
defined in [23]. CPP is the perplexity when calculated only across the language
switches, while monolingual perplexity (MPP) is the perplexity calculated within
monolingual stretches of text.

Similarly, in speech recognition experiments we make use of the code-switched
bigram (CSBG) error, which is the speech recognition error computed only for
words immediately following a language switch [3]. By observing this figure, the
impact of our interventions specifically on code-switching can be assessed.

3.2 Text Synthesis and N-Gram Augmentation

To generate text, the start sequence token <s> is presented to the generative
model as input. The model then returns a categorical probability distribution
over the possible next words as well as the hidden and cell state vectors. Using
random sampling, a next word is chosen from the categorical distribution. This
word token and the hidden and cell state vectors are then presented to the model
as a new input. This continues until the end sequence token </s> is synthesized,
or the sequence length reaches a predetermined maximum limit.

pi =
exp(zi/τ)

∑
j exp(zj/τ)

(1)

Random sampling allows more diverse samples to be obtained from the inner-
representation of the LSTM. The unnormalized likelihoods (zi) output by the
dense layer can be focused or spread by multiplication with a heuristic temper-
ature value τ , as shown in Eq. 1, where pi is the resultant probability.



Code-Switched Language Model Data Augmentation 5

Prompting. Neural networks trained to accomplish downstream natural lan-
guage processing (NLP) tasks are typically either pre-trained and adapted to
a task-domain or ‘prompted’ by syntactic characters [8]. We apply prompt-
ing to our LSTM model in an attempt to generate code-switched sequences
more effectively and reliably. During training, we mark all sequences containing
code-switches with the special start sequence token <scs>, while monolingual
sequences begin with token <smono>. In combination with this technique, the
discarding of monolingual sequences (ablation) is also considered. This results
in four text generation strategies, listed in Table 3.

Table 3. The four considered text generation strategies.

Discard monolingual Use special start
Strategy

sequences (ablation) token (prompting)

AllText

CSText ×
AllPrompt ×
CSPrompt × ×

Evaluating the Quality of Artificially-Generated Text. To determine
whether the synthesized data is useful, it is used to train an n-gram language
model, which is linearly interpolated with a baseline n-gram language model
(LMB) trained only on the training set (Table 1). The interpolation weight λ
is optimised to minimise the development set perplexity. During preliminary
experiments it became apparent that the optimal perplexity of this interpolated
model was generally not observed for text generated by LSTMs that had been
trained until convergence on the development set, which was observed to be
reached after only a few training epochs (NE � 10). Instead, text generated using
LSTMs for which training was allowed to continue after convergence provided
greater perplexity improvements. Therefore, the number of training epochs was
also considered to be a hyperparameter that was explicitly optimised.

3.3 Hyperparameter Tuning

Fig. 1 shows how optimization is split into three phases.



6 J. Jansen van Vueren and T. Niesler

Fig. 1. Block diagram of the hyperparameter and text generation tuning strategy used
to optimise the generative LSTMs.

Table 4. Hyperparameters considered for optimisation.

Symbol Description Considered range

NB Batch size {8, 16, 32, 64, 128, 256}
dRNN NN dimension {16, 32, 64, 128, 256, 512, 768}
dE Embedding dimension {2, 4, 8, 16, 32, 64, 128, 256}
NE Training epochs {5, 10, 15, ..., 60}
τ Temperature {0.75, 1.0, 1.25, 1.5}

Phase One: NB, dRNN, dE and NE. In Phase One, 20 separate LSTMs are
initialised, each with a different random seed. These models are trained on the
training sets in Table 1 and then used to generate 20 respective sets of artifi-
cial text, each 8000 sequences in length and without ablation (AllText, Table 3).
Each of these sets of text is used to train an n-gram language model that is
subsequently interpolated with the baseline n-gram (LMB) after which the per-
plexities described in Sect. 3.2 are calculated and stored. The hyperparameters in
Table 4 are tuned one at a time, repeating the above procedure for each consid-
ered value while holding the other parameters constant. Optimal hyperparameter
values were chosen based on the mean over the 20 experiments. Since the hyper-
parameters NB, dRNN and dE influence the rate of convergence, the models are
first evaluated for NE = {20, 40, 60} epochs. Subsequently, NE is optimized over
the range in Table 4. Due to the computational complexity of this process, only
one pass for each hyperparameter was performed.



Code-Switched Language Model Data Augmentation 7

Phase Two: τ . Phase Two of the optimization process utilised the best per-
forming hyperparameters from Phase One to train 20 new LSTM models for
each of the four text generation strategies in Table 3. For each strategy, 300,000
sequences are synthesized and this synthesis is repeated for the temperatures τ
listed in Table 4. The set of 20 models associated with the text generation strat-
egy with the best average performance was then used to generate 20 final datasets
consisting of 1 million sequences each. The 20 sets of 1 million sequences are
used to train 20 n-gram language models, which are each interpolated with the
baseline n-gram (LMB). The interpolated n-gram with the lowest code-switched
perplexity (CPP) on the development set is then selected to be used in the third
and final phase of augmentation experiments.

Table 5. Phase Three language models. LMB : Baseline, LMB+S : Baseline interpolated
with language model trained on synthesized text, LMB+M : Baseline interpolated with
language models trained on monolingual text, LMB+S+M : Baseline interpolated with
both synthesized and monolingual language models.

Label Train Synth English Bantu

LMB ×
LMB+S × ×
LMB+M × × ×
LMB+S+M × × × ×

Phase Three: Interpolation. In Phase Three, we consider the four augmented
n-gram language model configurations listed in Table 5. The baseline (LMB) is
trained only on the training set (Table 1). LMB+S indicates an interpolation
between the n-gram trained on the training set (LMB) and the best performing
n-gram trained on the synthesized dataset of 1 million sequences from Phase
Two. LMB+M indicates an interpolation between LMB and two n-gram lan-
guage models each trained on the respective out-of-domain monolingual cor-
porus shown in Table 2. LMB+S+M indicates an interpolation between LMB, an
n-gram language model trained on the synthesized dataset, as well as the two
n-gram language models trained on the out-of-domain monolingual corpora. The
resulting four interpolated n-gram language models in Table 5 are used in ASR
experiments.

4 Experimental Results

We note at the outset that, in our previous work on the same speech datasets,
synthesizing text using an LSTM without the hyperparameter optimisation we
proposed here afforded only insubstantial (<1%) improvements in perplexity
over the baseline, and no improvements in speech recognition accuracy [2].



8 J. Jansen van Vueren and T. Niesler

4.1 Hyperparameter Tuning

Table 6 shows the hyperparameter optimization process in Phase One (Sect. 3.3)
for the English-isiZulu sub-corpus. Similar behaviour was observed for the other
three language pairs. Each row reports the successive optimisation of the first
four hyperparameters in Table 4. We see that interpolation with a language
model trained on the synthesized dataset after optimising the first four hyperpa-
rameters leads to a 1.4% relative reduction in perplexity over the baseline LMB .
We expect only small perplexity improvements in Phase One due to the small
amount of text generated. More substantial improvements are achieved in Phase
2 of the optimisation procedure. We also note from the table that code-switched
perplexities (CPP) are much higher than overall perplexities (PP). This indicates
the high degree of uncertainty the n-gram has as language switches. Reducing
this uncertainty is the primary objective of our data augmentation.

Table 6. Development set perplexity (PP) and optimal average interpolation weight
(λ) between the baseline LMB and an n-gram trained on the synthesized text for the
English-isiZulu sub-corpus. Each row indicates the optimization a successive hyperpa-
rameter (Par) and its best performing value (Value).

Par Value λ LossTrain LossDev PP CPP

LMB – – – – 626 3226

NB 32 0.94 2.46 4.32 622 ± 2.2 3257 ± 28.9

dRNN 512 0.94 1.5 6.16 622 ± 1.6 3270 ± 27.8

dE 64 0.9 1.25 5.87 616 ± 3.7 3235 ± 48.1

NE 35 0.9 1.42 5.51 617 ± 2.5 3244 ± 36.4

We illustrate the effectiveness of the hyperparameter tuning strategy and
the need to choose effective parameters in Fig. 2. The figure shows the aver-
age relative improvement over the four language pairs afforded by the language
model incorporating the synthesized data relative to the baseline language model
(LMB) when optimising each hyperparameter. It is clear from the figure that
each hyperparameter has an associated optimum.



Code-Switched Language Model Data Augmentation 9

Fig. 2. Relative improvement in development set perplexity achieved during the suc-
cessive optimisation of the three hyperparameters: neural network dimension dRNN,
embedding dimension dE, and batch size NB. Average improvements are calculated
over the four language pairs and the three epochs (NE = {20, 40, 60}) at which the
8000 sequences in Phase One of hyperparameter tuning are synthesised.

In Phase Two of our optimization process (Sect. 3.3) the temperature (τ) is
optimised for each of the text generation strategies in Table 3. Table 7 presents
these optimal temperatures for the English-isiZulu sub-corpus. We see that, of
the values considered, τ = 1.5 was optimal for all text generation strategies.
We also observe that including all generated text (AllText) reduces perplexity
and code-switched perplexity by 6.71% and 9.92% respectively relative to the
baseline. When only sequences with language switches are retained (CSText),
both perplexity and code-switched perplexity show greater relative improve-
ments of 8.79% and 17.4%. Prompting increased the proportion of synthesised
sequences that contain code-switches from 32.0% (AllText) to 87.6% (AllPrompt)
and affords further perplexity improvements. Finally, combining both ablation
and prompting (CSPrompt) produced the best result of the four strategies and
reduces perplexity and code-switched perplexity by 9.58% and 20.1% relative to
the baseline. When this optimised LSTM is used to generate a larger dataset
(1,000,000 sequences), further gains are achieved.

Table 8 presents the perplexity and code-switched perplexity of the interpo-
lated language model for four temperatures when using the CSPrompt strategy
(Row 5 in Table 7). When artificial text is generated without modifying the
LSTM distribution, the perplexity of the resulting interpolated language model
is 6.23% better than the baseline. For the optimized temperature, this improve-
ment increases to 9.58% for the overall perplexity and a more substantial 18.3%
for the code-switched perplexity.

We note that higher temperatures produce lower perplexities and therefore
more surprising predictions are more helpful for language modelling. Further-
more, the mixture weight λ shifts towards the synthesized language model the
more the synthesized data is optimized. Finally, the standard deviation of the
perplexities is two orders of magnitude smaller than the corresponding means
for both PP and CPP, indicating a high degree of consistency.



10 J. Jansen van Vueren and T. Niesler

Table 7. Mean ± stdev English-isiZulu development set perplexity (PP) and code-
switched perplexity (CPP) over 20 runs for the four text generation strategies in
Table 3. Temperature τ and average optimal interpolation weight λ are indicated.

Strategy τ λ PP CPP

Baseline – – 626 3226

AllText 1.5 0.76 584 ± 2.5 2906 ± 56.3

CSText 1.5 0.73 571 ± 3.1 2666 ± 67.0

AllPrompt 1.5 0.73 568 ± 4.1 2628 ± 77.1

CSPrompt 1.5 0.73 566 ± 2.5 2579 ± 61.8

1 Mil 1.5 0.73 559 ± 3.6 2513 ± 57.5

Table 8. Mean ± stdev English-isiZulu development set perplexity (PP) and code-
switched perplexity (CPP) over 20 runs when interpolating LMB with an n-gram lan-
guage model trained on the data generated using CSPrompt text synthesis for different
temperatures τ . The associated average optimal interpolation weight is indicated by λ.

τ λ PP CPP

– – 626 3226

0.75 0.82 587 ± 3.5 3045 ± 61.9

1.0 0.75 570 ± 2.3 2798 ± 48.7

1.25 0.72 565 ± 3.8 2636 ± 60.9

1.5 0.73 566 ± 2.5 2579 ± 61.8

4.2 Speech Recognition

Table 9 shows the perplexities and word error rates achieved by each of the
four augmented language model configurations outlined in Table 5 for all four
language pairs.

We see again that the code-switched perplexity (CPP) is much larger than
the overall perplexity (PP) for all language pairs. Furthermore, the larger vocab-
ularies (Table 1) of isiZulu and isiXhosa are reflected in the higher perplexities,
when compared with Sesotho and Setswana. Finally, we see that the speech
recognition error rate at language switches (CSBG) is much higher than the
overall word error rate.

Table 9 shows that the language models incorporating the synthesized data
(LMB+S) reduce code-switched perplexities by between 6.8% and 19.9% relative
to the baseline (LMB). Furthermore, Table 9 shows that, for all four language
pairs, the language models that incorporate synthesized data (either LMB+S or
LMB+S+M ) achieved improvements over the baseline in terms of overall word
error rate (1.76% to 2.83% absolute) and also code-switched bigram error (0.86%
to 1.37% absolute). From this we conclude that the synthesized text is able to
reliably reduce the confusion around code-switched points. Additionally, we note



Code-Switched Language Model Data Augmentation 11

Table 9. Test set perplexity (PP), code-switched perplexity (CPP), monolingual per-
plexity (MPP), word error rate (WER), monolingual English and Bantu word error
rates (WERENG, WERBAN ) and code-switched bigram (CSBG) error for the four
language model configurations in Table 5.

Pair Model PP CPP MPP WER WERENG WERBAN CSBG

EZ

LMB 842.4 3637 534.8 41.40 36.56 45.12 62.66

LMB+S 758.5 2912 500.8 42.15 36.67 46.36 61.52

LMB+M 624.9 3550 367.4 38.39 31.35 43.81 62.67

LMB+S+M 597.3 2954 365.8 38.57 31.29 44.18 61.69

EX

LMB 1018.0 5171 624.9 42.53 36.71 46.98 68.29

LMB+S 979.8 4818 611.3 41.83 36.08 46.23 66.92

LMB+M 790.0 5055 456.2 40.56 30.87 47.98 67.64

LMB+S+M 793.6 4883 463.5 40.77 31.0 48.24 68.06

ES

LMB 285.9 1166 209.0 49.56 40.2 56.95 66.88

LMB+S 269.7 1016 202.5 49.49 39.44 57.44 66.53

LMB+M 223.1 1080 158.9 47.14 33.98 57.53 66.69

LMB+S+M 223.9 979.4 163.0 47.23 34.71 57.12 65.91

ET

LMB 224.5 1025 154.3 40.80 31.01 47.23 54.90

LMB+S 202.3 864.8 142.8 40.24 29.96 47.0 54.04

LMB+M 179.8 963.3 120.6 38.36 26.23 46.34 54.47

LMB+S+M 171.7 815.5 118.4 38.56 26.84 46.28 54.91

that the reduction in code-switched error rate achieved by our language models
incorporating the synthesized data (LMB+S) is not achieved by incorporating
only the monolingual data (LMB+M ). This emphasises the importance of obtain-
ing more code-switched data, which we achieved here through synthesis.

Language models incorporating only the out-of-domain monolingual data
(LMB+M ) substantially lower the overall and the monolingual perplexities (by
between 19.9% and 31.3%) relative to the baseline. These language models
also improve the speech recognition performance, outperforming the baseline
by between 1.97% and 3.01% absolute in terms of word error rate. The strong
correspondence between decreases in monolingual and overall perplexities and
word error rate is due to the fact that, despite code switches, most speech remains
monolingual. As expected, however, the additional monolingual data has little
effect on the code-switched perplexity.

We also note that, for all four language pairs, the language models that
incorporate only monolingual data (LMB+M ) result in the best overall word
error rate, marginally outperforming the language models that also incorporate
synthesized data (LMB+S+M ) by between 0.09% and 0.21% absolute. However,
the columns WERENG and WERBAN of Table 9 show that this is due mostly
to an improvement in the English word error rate (absolute improvements of
between 4.78% and 6.22%). Importantly, this is often at the expense of the



12 J. Jansen van Vueren and T. Niesler

Bantu word error rate. Additionally the inclusion of only the monolingual data
only marginally affects the recognition error at code-switches (between 0.01%
worse and 0.65% better). In terms of code-switched bigram error, the language
models which incorporated only the synthesized data outperformed the baseline
language models and also the language models which incorporated only the
monolingual data for all four language pairs.

5 Conclusion

We have presented a strategy that optimises an LSTM specifically for the pur-
pose of generating code-switched utterances that can be used for language model
augmentation. We find that, while our previous LSTMs that are not optimised
in this way did not afford improvements, the optimised models are able to gen-
erate text the leads to consistent and substantial perplexity and word error
rate improvements in all four considered language pairs, especially at language
switches. We also see that, although out-of-domain but monolingual data does
produce slightly better average speech recognition performance, this improve-
ment is primarily seen for English and is at the expense of the performance in the
four under-resourced languages as well as at language switches. We conclude that
the hyperparameter tuning, ablation and prompting are effective techniques for
improving the speech recognition accuracy at language switches severely under-
resourced code-switched datasets.

Acknowledgments. We would like to thank the Council for Scientific and Industrial
Research (CSIR), Department of Science and Technology, South Africa for providing
access to their CHPC cluster. We gratefully acknowledge the support of Telkom South
Africa.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems. White Paper (2015)

2. Biswas, A., van der Westhuizen, E., Niesler, T., de Wet, F.: Improving ASR for
code-switched speech in under-resourced languages using out-of-domain data. In:
Proceedings of the 6th International Workshop on Spoken Language Technologies
for Under-Resourced Languages (SLTU), Gurugram, India (2018)

3. Biswas, A., Yilmaz, E., de Wet, F., van der Westhuizen, E., Niesler, T.: Semi-
supervised development of ASR systems for multilingual code-switched speech in
under-resourced languages. In: Proceedings of the 12th Language Resources and
Evaluation Conference (LREC), Marseille, France (2020)

4. Biswas, A., Yılmaz, E., de Wet, F., van der Westhuizen, E., Niesler, T.: Semi-
supervised acoustic model training for five-lingual code-switched ASR. In: Pro-
ceedings of Interspeech, Graz, Austria (2019)



Code-Switched Language Model Data Augmentation 13

5. Chang, C.T., Chuang, S.P., Lee, H.Y.: Code-switching sentence generation by gen-
erative adversarial networks and its application to data augmentation. In: Pro-
ceedings of Interspeech, Graz, Austria (2019)

6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), Doha, Qatar (2014)

7. Deuchar, M.: Welsh-English code-switching and the matrix language frame model.
Lingua 116(11), 1986–2011 (2006)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

9. Gao, Y., Feng, J., Liu, Y., Hou, L., Pan, X., Ma, Y.: Code-switching sentence gener-
ation by BERT and generative adversarial networks. In: Proceedings of Interspeech,
Graz, Austria (2019)

10. Garg, S., Parekh, T., Jyothi, P.: Code-switched language models using dual RNNs
and same-source pretraining. In: Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Brussels, Belgium (2018)

11. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

13. Hu, X., Zhang, Q., Yang, L., Gu, B., Xu, X.: Data augmentation for code-switch
language modeling by fusing multiple text generation methods. In: Proceedings of
Interspeech, Shanghai, China (2020)

14. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent
network architectures. In: Proceedings of the International Conference on Machine
Learning (2015)

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Lee, G., Yue, X., Li, H.: Linguistically motivated parallel data augmentation
for code-switch language modeling. In: Proceedings of Interspeech, Graz, Austria
(2019)

17. Myers-Scotton, C.: Duelling Languages: Grammatical Structure in Codeswitching.
Oxford University Press, Oxford (1997)

18. Povey, D., et al.: The Kaldi speech recognition toolkit. In: Proceedings of the IEEE
Workshop on Automatic Speech Recognition and Understanding (ASRU), Hawaii,
USA (2011)

19. Stolcke, A.: SRILM-an extensible language modeling toolkit. In: Proceedings of
the Seventh International Conference on Spoken Language Processing (ICSLP),
Colorado, USA (2002)

20. Taneja, K., Guha, S., Jyothi, P., Abraham, B.: Exploiting monolingual speech
corpora for code-mixed speech recognition. In: Proceedings of Interspeech, Graz,
Austria (2019)

21. van der Westhuizen, E., Niesler, T.: A first South African corpus of multilingual
code-switched soap opera speech. In: Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC). European Language
Resources Association (ELRA), Miyazaki (2018)

22. van der Westhuizen, E., Niesler, T.: Automatic speech recognition of English-
isiZulu code-switched speech from South African soap operas. Procedia Com-
put. Sci. 81, 121–127 (2016). 5th Workshop on Spoken Language Technologies
for Under-resourced languages (SLTU), Yogyakarta, Indonesia

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1412.6980


14 J. Jansen van Vueren and T. Niesler

23. van der Westhuizen, E., Niesler, T.R.: Synthesised bigrams using word embeddings
for code-switched ASR of four South African language pairs. Comput. Speech Lang.
54, 151–175 (2019)

24. Yılmaz, E., van den Heuvel, H., van Leeuwen, D.: Acoustic and textual data aug-
mentation for improved ASR of code-switching speech. In: Proceedings of Inter-
speech, Hyderabad, India (2018)


	Optimised Code-Switched Language Model Data Augmentation in Four Under-Resourced South African Languages
	1 Introduction
	2 Dataset
	3 Experimental Strategy
	3.1 Metrics
	3.2 Text Synthesis and N-Gram Augmentation
	3.3 Hyperparameter Tuning

	4 Experimental Results
	4.1 Hyperparameter Tuning
	4.2 Speech Recognition

	5 Conclusion
	References


