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Abstract
We explore the use of out-of-domain monolingual data for the
improvement of automatic speech recognition (ASR) of code-
switched speech. This is relevant because annotated code-
switched speech data is both scarce and very hard to produce,
especially when the languages concerned are under-resourced,
while monolingual corpora are generally better-resourced. We
perform experiments using a recently-introduced small five-
language corpus of code-switched South African soap opera
speech. We consider specifically whether ASR of English–
isiZulu code-switched speech can be improved by incorporating
monolingual data from unrelated but larger corpora. TDNN-
BLSTM acoustic models are trained using various configura-
tions of training data. The utility of artificially-generated bilin-
gual English–isiZulu text to augment language model train-
ing data is also explored. We find that English-isiZulu speech
recognition accuracy can be improved by incorporating mono-
lingual out-of-domain data despite the differences between the
soap-opera and monolingual speech.
Index Terms: Code-switching, under-resourced languages,
African languages, Bantu languages, acoustic modelling,
speech recognition, TDNN-BLSTM, RNN.

1. Introduction
South Africa is a highly multilingual country and code-
switching (CS) is common in everyday conversations. Among
the 11 official languages, English serves as the lingua franca,
leading to frequent switching between it and the other lan-
guages. Code-switching is usually observed in spontaneous
speech, which is generally fast and accented. This presents a
challenging scenario for automatic speech recognition (ASR),
especially when one or more of the languages are under-
resourced.

Automatic speech recognition of code-switched speech is
a topic of current research interest [1–5]. For example, a
framework for English-Mandarin spontaneous code-switched
speech recognition is proposed in [1]. Different phone merg-
ing approaches were explored for acoustic modelling, and
the application of statistical machine translation (SMT) to the
generation of code-switched text for language modelling was
evaluated. Large vocabulary English–Mandarin code-switched
speech recognition was also considered in [2]. In this case a
bilingual acoustic model was developed to reflect the changes in
accent associated with code-switching while the points at which
language change occurs were predicted by the language model.
A study focussing on bilingual Dutch-Frisian code-switched
ASR was reported in [4]. Here the application of deep neural
network (DNN) architectures in the acoustic model was exten-
sively considered. The English-Sepedi code-switched corpus
presented in [3] was the first to include an African language.
Subsequently, a GMM-HMM based speech recognizer was pre-

sented for English-isiZulu code-switched speech in [5]. Four
different system configurations were investigated, with differ-
ent combinations of language dependent or independent acous-
tic and language models.

Most broadcast programmes generally contain prepared,
monolingual speech. In contrast, South African soap operas
exhibit fast, spontaneous speech which contains extensive code-
switching. We have recently compiled a corpus containing 14.3
hours of language-balanced code-switched speech drawn from
such soap operas. The corpus is arranged into four language
pairs: English-isiZulu, English-isiXhosa, English-Setswana,
English-Sesotho. Our first attempts at acoustic modelling us-
ing this data considered using the different language pairs
to improve the recognition of English-isiZulu code-switched
speech [6]. We found that using additional training data from
other code-switched language pairs improved the performance
of a baseline system trained only on the target language pair
(English-isiZulu). Furthermore, we found that the acoustic
models benefited most from additional training data in closely
related languages. However, all these experiments were limited
to the soap opera corpus, which is limited in size and uniform
in terms of style and character.

In this study we aimed to determine whether further im-
provements in the ASR performance can be achieved for
English-isiZulu code-switched speech by incorporating addi-
tional out-of-domain monolingual speech. The speech in ques-
tion was taken from a substantially larger corpus of prompted
monolingual speech and is therefore poorly matched to our soap
opera data [7].

2. Speech data
Studies have shown that the amount of training data strongly
influences the accuracy and robustness of ASR systems [8–10].
However, code-switched speech data is difficult to collect and
annotate. This is in part due to the spontaneous nature of code-
switched speech and in part due to the poorly-understood mech-
anisms underlying the switching between languages. These fac-
tors complicate the development of prompts and the elicitation
of suitable natural utterances. Furthermore, manual annotation
of code-switched speech is difficult, time-consuming and re-
quires more specialised linguistic skills than it does for mono-
lingual speech. Consequently, very little in-domain speech data
is available for the language pairs in question.

2.1. South African code-switched soap opera corpus

The English-isiZulu code-switched speech is part of a cor-
pus that has been compiled from 626 episodes of three dif-
ferent multilingual South African soap operas [11]. This cor-
pus includes five South African languages: isiZulu, isiXhosa,
Setswana, Sesotho and English. Of these, isiZulu and isiX-
hosa belong to the Nguni (N) language family while Sesotho
and Setswana are Sotho (S) languages. Table 1 shows the to-



tal duration as well as the duration of the monolingual and
code-switched utterances in the training set of each language
pair. It also gives an overview of the training (Train), devel-
opment (Dev) and test (Test) sets used in this study. The test
set comprises approximately 10% of the data selected across
all episodes such that there is no overlap between the speakers
in the training and test sets. The test set was also constrained
to contain no monolingual utterances, but only utterances with
intrasentential code-switching. The training sets contained a
balanced combination of monolingual and code-switched utter-
ances. As far as possible the data was segmented such that each
utterance contains a complete sentence.

Table 1: Duration in hours (h) and minutes (m) of English,
isiZulu, isiXhosa, Setswana, Sesotho in monolingual (Eng, Zul,
Xho, Tsn, Sot) and in code-switched (Eng CS, Zul CS, Xho CS,
Tsn CS, Sot CS) utterances.

English-isiZulu (EngZul)
Set Eng Zul Engl CS Zul CS Total
Train 93m 93m 45.86m 56.99m 4.81h
Dev 0 0 4.01m 3.96m 8m
Test 0 0 12.76m 17.85m 30.40m
Total 93m 93m 62.40m 78.60m 5.45h

English-isiXhosa (EngXho)
Eng Xho Eng CS Xho CS Total

Train 65.22m 53.55m 18.04m 23.73m 2.67h
English-Setswana (EngTsn)

Eng Tsn Eng CS Tsn CS Total
Train 40.4m 30.96m 34.37m 34.01m 2.33h

English-Sesotho (EngSot)
Eng Sot Eng CS Sot CS Total

Train 49.34m 35.32m 23.02m 34.04m 2.36h

Table 1 shows that all subcorpora are under-resourced. The
soap opera speech is also typically fast, spontaneous and ex-
presses emotion. Hence it is a challenging corpus for ASR.

Examples of intrasentential code-switching from the corpus
include alternation (structurally independent stretches of En-
glish and isiZulu), insertion (an English language element is in-
corporated into the structure of isiZulu) and intraword switches
(isiZulu affixes are used with the English items to form a word).
There are a total of 10 343 code-switched utterances and 19 207
intrasentential language switches in the corpus. Note that the
test set contains only code-switching utterances. The word type
and token counts for the English-isiZulu training, development
and test partitions are provided in Table 2.

Table 2: Number of word types and tokens in the training, devel-
opment and test sets of the English-isiZulu code-switched cor-
pus.

English isiZulu Total
Data set Tokens Types Tokens Types Tokens Types
Train 28 033 3 608 24 350 6 765 52 383 10 373
Development 838 415 734 443 1 572 858
Test 2 459 871 3 199 1 420 5 658 2 291
Total 31 330 3 842 28 283 7 425 59 613 11 269

2.2. NCHLT corpus

The NCHLT speech corpus contains monolingual wide-band
prompted speech in each of the 11 official languages of South
Africa. A greedy algorithm was used to select the prompts from
a body of text during the compilation of the corpus [12]. Tri-
gram prompts were used for English and the Nguni languages
while five-gram prompts were used for the Sotho languages.

The NCHLT corpus contains approximately 50 hours of
speech gathered from around 200 speakers in each language.

Table 3: Statistics of the NCHLT speech data used in this study.

Language Duration (h) # Speakers Tokens Types
isiZulu 52.22 201 116 319 23 912
isiXhosa 53.15 201 122 236 27 856
English 54.18 202 205 392 8 215

The pre-defined NCHLT English, isiZulu and isiXhosa training
data sets, shown in Table 3, were used in our experiments. Al-
though the nature of the NCHLT speech is quite different from
the soap opera speech, it is one of the only other annotated
speech corpora available for these languages. For this reason
we were interested in investigating its potential to improve the
performance of our code-switched speech recognizer. We in-
cluded isiXhosa in our experiments since it is a close relative of
isiZulu and may therefore be useful for acoustic modelling.

3. Text data
The three text data sets listed in Table 4 were used for lan-
guage modelling. The in-domain text was derived from the soap
opera corpus training set transcriptions. The English-isiZulu
vocabulary of 11 269 word types was closed with respect to the
training, development and test sets. Additional out-of-domain
text was sourced from monolingual English and isiZulu South
African newspaper reports, web text and the transcriptions of
conversations.

Table 4: Text sources used for language modelling.

Text Type English tokens isiZulu tokens
In-domain Bilingual 28 033 24 350
English Monolingual 471M -
isiZulu Monolingual - 3.2M

In a related study on ASR for Frisian-Dutch code-switched
speech, it was found that using additional LSTM-generated text
reduced the language model perplexity [13]. We therefore con-
sidered similarly supplementing our real text data with text
generated artificially using an LSTM trained on the in-domain
English-isiZulu code-switched text.

4. Acoustic modelling
Recent work in acoustic modelling has established that time de-
lay neural network (TDNN) [14, 15] and long short-term mem-
ory LSTM [16] acoustic model topologies can yield substan-
tial improvements in speech recognition accuracy in compar-
ison with deep neural networks (DNNs) [6, 16]. LSTMs use
memory cells in the hidden layers instead of the conventional
activation functions employed by feedforward networks, allow-
ing training problems associated with vanishing and exploding
gradients to be overcome and long-range temporal dependen-
cies to be learnt. The sub-sampling mechanism employed by
TDNNs significantly reduces model training time, and further
improvements are possible by using a lattice-free, maximum
mutual information (LF-MMI) training criterion [17].

The performance benefits of TDNN-LSTM acoustic mod-
els for English-isiZulu code-switched ASR have already been
established [6]. Here we extend the architecture to bi-
directional LSTMs (BLSTMs) which process input data in both
time directions using two separate hidden layers [18]. This type
of architecture allows the preservation of both past and future
context information. Furthermore, the interleaving of temporal
convolution and BLSTM layers has been shown to effectively
model future temporal context [19].

ASR experiments were performed using the Kaldi ASR
toolkit (version 5.2.164) [20]. As a first step the training sets of



all the relevant languages were combined to form a single pool
of training data. Then, a conventional context-dependent Gaus-
sian mixture model-HMM (GMM-HMM) acoustic model with
25k Gaussians was trained using 39 dimensional mel-frequency
cepstral coefficient (MFCC) features including deltas and delta-
deltas. This GMM-HMM model was used to obtain the align-
ments required for neural network training.

The same pool of training data was used to derive
acoustic features for neural network training. However,
in this case three-fold data augmentation was applied prior
to feature extraction [21]. The acoustic features included
MFCCs (40-dimensional, without derivatives), pitch features
(3-dimensional) and i-vectors for speaker adaptation (100-
dimensional).

LF-MMI TDNN-BLSTM acoustic models with 1 standard,
2 time-delay and 3 BLSTM layers were trained for various
training set configurations. No parameter tuning was performed
for neural net training, but default parameters of the standard
Switchboard Kaldi recipe were used [22]. This resulted in a
set of multilingual acoustic models, which were subsequently
subjected to English-isiZulu code-switched adaptation.

5. Language modelling
The SRILM toolkit [23] was used to train and evaluate a bilin-
gual 3-gram language model trained on the English-isiZulu
training data transcriptions. This language model was interpo-
lated with monolingual English and isiZulu LMs derived from
the texts in Table 4. The interpolation weights were optimised
on the development set perplexity. An analysis of the perplexity
of this language model on monolingual and code-swiched text
is shown in Table 5.

Table 5: Detailed perplexity analysis of the bilingual English-
isiZulu trigram language model when applied to the develop-
ment and test sets described in Table 2. Perplexities for lan-
guage switches indicate the uncertainty of the first word follow-
ing the switch.

Dev set Test set
All text 425.82 601.69
All language switches in text 2 852.48 3 291.95
All English to isiZulu language switches 3 354.82 3 834.99
All isiZulu to English language switches 2 467.88 2 865.41
All monolingual text 258.28 358.08
All English monolingual text 133.17 121.15
All isiZulu monolingual text 558.00 777.76

We see that the perplexity for monolingual English is much
lower than the corresponding value for monolingual isiZulu.
This is not surprising, given the difference in size between the
two monolingual corpora, as shown in Table 4. The perplexity
is particularly high at language switches.

Additional language model training sets containing 2M, 5M
and 10M words were generated using an LSTM, as described in
Section 3. Two versions of the additional text data were used:
one “as is” and the other filtered to contain only code-switched
utterances. The filtered versions of the data contained 1.1M, 2M
and 7M words respectively. Six language models were derived
from the original and filtered versions of the additional text and
interpolated with the existing language models using develop-
ment set perplexity as a performance metric. The perplexity val-
ues obtained in this manner are compared to the baseline values
in Table 6.

A comparison between the first four rows of the table re-
veals a substantial reduction in perplexity for both the devel-
opment and test sets when the in-domain, bilingual language

Table 6: Perplexity analysis of different language models on the
English-isiZulu development and test sets described in Table 1.
(CS: code-switched.)

Language Model Dev set Test set
1 English-isiZulu CS text 539.6 697.5
2 + Monoligual English 438.1 621.0
3 + Monolingual isiZulu 513.1 630.7
4 + Monoligual English + Monolingual isiZulu 425.8 601.7
5 + Generated text (2M) 418.4 602.1
6 + Generated CS text (1.1M) 418.1 603.2
7 + Generated text (5M) 417.9 596.9
8 + Generated CS text (2.9M) 419.2 597.9
9 + Generated text (10M) 416.8 596.5
10 + Generated CS text (7M) 416.3 596.7

model is interpolated with the two out-of-domain, monolin-
gual language models. The table also shows that interpolation
with the language models derived from the artificial data af-
forded only marginal perplexity reductions, and that most of this
reduction was provided by the artificial text containing code-
switching.

6. ASR experiments and results
The data sets described in Section 2 were used in different con-
figurations to train LF-MMI TDNN-BLSTM acoustic models,
as described in Section 4. The results that follow were all ob-
tained using the interpolated bilingual trigram language model
described in Section 5 (Table 6, row 4). In contrast to the re-
sults obtained for Dutch and Frisian code-switched speech, we
observed only marginal changes in WER for the language mod-
els incorporating the artificially generated text, despite the ob-
served reduction in perplexity. Perhaps this is due to the com-
paratively small text dataset we have available for training the
LSTM-LM [24].

6.1. Adding out-of-domain training data

ASR performance on the English-isiZulu code-switched test set
described in Table 2 is summarised in Figure 1. The first set of
bars in Figure 1 correspond to the complete code-switched test
set while the second and third sets of bars indicate the language
specific WERs calculated on the English and isiZulu words re-
spectively. The legend indicates which NCHLT languages were
added to the in-domain soap opera training data.

Despite the difference between the NCHLT and soap opera
speech, Figure 1 shows that the acoustic models benefit from
the additional training data in every case. The word error rates
are reduced substantially by the individual incorporation of the

Figure 1: Word error rates (WER) for English-isiZulu code-
switched test data. The legend indicates the NCHLT languages
added to the training data.



NCHLT English and isiZulu data sets, but best results were
obtained when both were added together. Compared to the
baseline acoustic model trained only on English-isiZulu code-
switched speech, this augmentation leads to a 10.27% relative
improvement. We also see that the improvement in performance
when adding the NCHLT isiZulu and isiXhosa data is almost the
same as that achieved when adding only isiZulu. Furthermore,
the performance when adding English, isiZulu and isiXhosa
from NCHLT is worse than adding only English and isiZulu.
We conclude that adding out-of-domain data in a related lan-
guage (isiXhosa) is not helpful.

6.2. Adding in-domain and out-of-domain training data

In [6] we have shown that additional training data from related
code-switched language pairs improved the recognition accu-
racy of English-isiZulu code-switching speech. The best results
were achieved by training the acoustic models on all four code-
switched language pairs from the soap opera corpus. This trend
is confirmed by the results in Table 7.

Table 7: WER (%) for English-isiZulu code-switched data: dif-
ferent combinations of in-domain code-switched and out-of-
domain monolingual NCHLT data.

Training data Dev Test English
(Test)

isiZulu
(Test)

EngZul (baseline) 52.16 58.27 55.23 60.61
+ NCHLT Eng + NCHLT Zul 49.36 52.28 48.03 55.55
EngZul + EngXho 50.06 56.04 51.04 59.89
+ NCHLT Eng + NCHLT Zul 47.08 50.95 45.18 55.39
EngZul + EngXho + EngTsw + EngSot 47.07 53.06 47.62 57.24
+ NCHLT Eng + NCHLT Zul 44.21 50.09 46.24 53.05

The values in Table 7 show that the acoustic model trained
on two code-switched language pairs (EngZul + EngXho)
yields a relative improvement of 4.02% and 3.82% on the de-
velopment and test sets respectively compared to the baseline.
The table also confirms that, using only in-domain data from the
code-switched corpus, the lowest WER for the English-isiZulu
test set was achieved when the acoustic models were trained
on a combination of all four code-switched training data sets
(EngZul + EngXho + EngTsw + EngSot). Similar to the trend
observed in Figure 1, the results in Table 7 show that adding ad-
ditional out-of-domain NCHLT data to the training set improves
the recognition performance.

Further analysis of the TDNN-BLSTM ASR output is
shown in Table 8. The results confirm that the word correct ac-
curacy improves for both English and isiZulu when more acous-
tic data is added to the pool of training data. The analysis also
reveals a substantial improvement in word accuracy at the 1 464
code-switching points occurring in the test data when additional
out-of-domain training data is included in acoustic model train-
ing.
Table 8: Detailed analysis of ASR output when decoding with
different acoustic models. All values are percentages (%).
(CS: code-switching.)

EngZul
+NCHLT
Eng Zul

EngZul
+EngXho

+NCHLT
Eng Zul

All four
CS pairs

+NCHLT
Eng Zul

English words correct 47.54 54.98 51.08 57.95 54.78 56.53
isiZulu words correct 41.36 45.89 42.08 46.95 45.08 48.73
Words correct after CS 42.96 48.77 44.33 50.55 49.04 51.37
isiZulu Words correct after CS 42.13 45.33 42.34 47.91 44.13 49.38
English Words correct after CS 43.78 50.44 46.61 52.05 50.80 54.16
Language correct after CS 69.81 70.97 68.65 75.07 73.29 74.80

6.3. Balanced addition of in-domain and out-of-domain
training data

The results in the previous sections seem to indicate that acous-
tic modelling for code-switch ASR can be enhanced by using

additional, out-of-domain monolingual speech data. However,
comparing the values in Tables 1 and 3 reveals that, for most of
the languages, the monolingual NCHLT data sets are more than
ten times the size of their in-domain code-switched counter-
parts. To investigate the impact of additional in-domain versus
out-of-domain data from a closely related language, we reduced
the NCHLT English and Xhosa data to match the EngXho data
set in the code-switched corpus. The results of this “balanced”
experiment are shown in Table 9.

Table 9: WER (%) for English-isiZulu test data with additional
in-domain English-isiXhosa code-switched data and balanced
out-of-domain monolingual NCHLT English and isiXhosa data.

Training data Dev Test English
(Test)

isiZulu
(Test)

EngZul 52.16 58.27 55.23 60.61
EngZul + EngXho 50.06 56.04 51.04 59.89
EngZul
+ NCHLT Eng and Xho 52.35 57.60 55.10 59.52

The results in Table 9 show that the acoustic models bene-
fit more from additional in-domain training data than from an
equal amount of out-of-domain training data. The language
specific WERs in the last two columns of the table show that,
while the English component of the test set benefits substan-
tially from the additional in-domain code-switch data, it does
not gain much if a similar amount of NCHLT English data is
added to the training set. The corresponding improvement for
isiZulu is marginal in both instances. This observation suggests
that additional in-domain acoustic data remains a prerequisite
for more accurate code-switched ASR.

7. Summary and conclusion
This paper presents a study aimed at improving the automatic
recognition of under-resourced English-isiZulu code-switched
speech by using the out-of-domain monolingual speech found
in the NCHLT speech corpus. TDNN-BLSTM based systems
were developed and evaluated using multilingual code-switched
speech extracted from South African soap operas and NCHLT
speech. The recognition systems were trained with language
dependent acoustic models and language independent lexica.

The results of the investigation show that the out-of-domain
data has good potential to improve the ASR performance of
under-resourced code-switched speech. We found that the ad-
dition of out-of-domain speech improves the word error rate
substantially for code-switched English-isiZulu when compared
with a baseline system trained only on in-domain code-switched
speech. Although the out-of-domain speech is monolingual and
prompted, and therefore dissimilar in character to the in-domain
spontaneous code-switched soap opera speech, acoustic models
still benefited from the additional data.

Despite these improvements, error rates remain high and
further enhancement is required. Future work will focus on ex-
panding the code-switched data by means of automatic segmen-
tation and transcription, as well as using monolingual speech of
both closely and distantly related languages.
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