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Abstract—We investigate the application of sparse coding and
dictionary learning to the discovery of sub-word units in speech.
The ultimate goal is to generate pronunciation dictionaries
that could be used for automatic speech recognition (ASR). A
dictionary of sparse coding atoms is trained to code a subset
of the TIMIT corpus. Some of the trained units exhibit strong
correlation with specific reference phonemes. It is found that our
sparse coding model does not place sufficient constraints for the
activation of atoms to be temporally isolated, which rules out its
direct application to speech segmentation. We also investigate the
consistency with which orthographically identical utterances are
coded. We find that the sparse coding model used in this study
generates codes that contain too much variation for it to be useful
for generating pronunciation dictionaries for ASR.

I. INTRODUCTION

We investigate the application of sparse coding and dic-
tionary learning to the task of automatic segmentation and
clustering of speech into a compact set of acoustically rele-
vant sub-word units. The ultimate purpose is the automatic
generation of pronunciation dictionaries suitable for automatic
speech recognition (ASR).

Currently, subword units used for ASR are based on
phonemes and must be defined and identified by highly trained
linguists. Since this procedure is expensive and requires the
availability of linguistic experts in the target language, it
presents a major obstacle to the implementation of ASR for
severely under-resourced languages.

Previous attempts at automatic discovery of sub-word units
have relied upon a linear two-stage approach, where some
corpus of speech is first segmented into relatively stationary
sub-units. The resulting acoustic fragments are presented to a
clustering algorithm, the output of which is a hypothesized set
of phonemic units [1].

In this paper, we investigate a novel approach to auto-
matic speech segmentation and clustering by attempting to
accomplish the segmentation and clustering in tandem. We
hypothesize that such an approach may yield an improvement
over blind segmentation and subsequent clustering, since a
segmentation informed by matching a speech signal to a
relatively small set of clusters that develop in the same step,
should be more robust.

II. BACKGROUND

A. Sparse coding and dictionary learning

Sparse coding can be stated as attempting to reconstruct
some input signal using a linear combination of the smallest
possible number of basis functions taken from a finite set. That
is, a sparse code x, can be seen as a solution to

argmin
x

‖x‖0 such that y = Dx (1)

where y ∈ R
N×1 is the signal we are trying to reconstruct,

D ∈ R
N×M is the set of basis functions, packed column-

wise, and x ∈ R
M×1 where ‖x‖0 represents the number

of nonzero values in the vector x. In the context of sparse
coding, it is understood that M ≫ N , which makes the set
of basis functions overcomplete. In the context of speech, we
may consider a typical utterance to be our input signal, which
we wish to code using a highly sparse selection of sub-word
phonemic units, which act as basis functions.

In some cases, the dictionary of basis functions (also called
atoms or features) is not known beforehand. Thus, it is neces-
sary to obtain both the code and the dictionary simultaneously,
in steps usually referred to as sparse coding and dictionary
learning. Of course, if we are given only one signal, Equation
(1) can be trivially optimized by creating a minimal dictionary
containing just that signal. In the case of sparse coding and
dictionary learning, it is therefore understood that we are given
an ensemble of signals

Y = [y0,y1, . . . ,yK−1] , (2)

for which we need to produce a corresponding ensemble of
codes X and dictionary D satisfying

argmin
X

‖X‖0 such that Y = DX. (3)

It is also understood that K ≫ M , i.e. the number of
signals that we need to code greatly outnumber the number
of allowable basis functions.

B. Shift and scale invariance

The formulation of sparse coding discussed in the previous
section is not particularly appropriate for the purpose of
describing speech signals. In particular, there are two main
deficiencies. The first of these is that phonemic sub-units
generally occur at any point in a signal, which necessitates a
highly redundant dictionary to accommodate all possible time
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shifts of that unit. The second deficiency is that the units can be
compressed or stretched in time and still retain their meaning,
leading to an even more redundant set of atoms.

In order to remedy the first deficiency, several authors [2]–
[5] have proposed replacing the dictionary-code product Dx,
with a dictionary-code convolution, which we define as

Φ∗S =

M∑

j=1

φj ∗ sj , (4)

where Φ ∈ R
Nφ×M is the convolutional dictionary, and S ∈

R
M×N are the coefficient sequences. The quantities φj and

sj refer to the j th column and row of Φ and S respectively.
Each atom φj is now associated with a coefficient sequence
sj that represents not just whether an atom is being used, but
also at what position in y.

To address the second deficiency, scale invariance can be
afforded to the convolutional sparse coding formulation by
including each base atom at several time scales.

C. Optimisation problem

The exact formulation of the sparse coding problem as
given in Equations (1) and (3) has so far remained intractable.
Moreover, the pursuit of an exact recovery of the input signal
may not be useful. For example, there may be some inherent
source of unwanted variability in the data (such as additive
noise). Also, an exact reconstruction could well be achieved at
the expense of greatly reduced sparsity. Most authors therefore
choose to cast the problem into an optimization framework [4]–
[8]. The cost function which is commonly used is

C(Φ, {Sk}) =

K∑

k=1

‖yk −Φ∗Sk‖
2
2 + βτ(Sk), (5)

where Sk refers to the coefficient sequences used to code the
kth input signal yk. The cost function can be seen as a weighted
sum of the reconstruction error and a code diversity measure
τ(S). The latter term yields small values when the code is
sparse, and large values when it is not. The l0 pseudo-norm
used in Equation (1) is one possible diversity measure, but
others that are differentiable have been proposed [7], [9].

D. Applicability to speech signals

If one examines the phonetic transcriptions of speech
corpora such as TIMIT, it becomes apparent that they represent
a high-level shift and scale invariant sparse coding of speech.
It therefore seems plausible that a phoneme-like transcription
could arise naturally from a convolutional sparse coding pur-
suit on the acoustic data.

E. Previous work

1) Sub-word unit discovery: Singh et al [10] attempt to
obtain a set of sub-word acoustic models and associated
transcriptions using a maximum likelihood approach, where
they attempt to maximise the likelihood of the acoustic data,
conditioned on the orthographic transcriptions, acoustic models
and resulting pronunciations. The model used by [10] makes
extensive use of the assumption that there exists a strong cor-
relation between the spelling of words and their pronunciation.

Update atoms

Update code

Iterate until converged

Initialise code
{Sk}0

{Sk}n+1

b
Φn{Sk}n

Fig. 1. Overview of sparse code and dictionary learning with an initial code.

Previous work by Goussard and Niesler [1] used the two-
stage approach described earlier, where the audio was first
segmented into phoneme-like fragments and then clustered.
The segmentation was performed by inserting segmentation
boundaries whenever the log energy weighted cosine distance
between successive MFCC vectors exceeded a predetermined
threshold [11]. The resulting set of acoustic fragments was
clustered into a compact set of units using agglomerative
hierarchical clustering with a dynamic time warping (DTW)
alignment cost acting as distance metric.

2) Sparse coding applied to speech: There has also been
some research on using sparse coding with the aim of improv-
ing automatic speech recognition. In [3], Smit and Barnard
developed a continuous speech recogniser using statistical
models of sparse code sequences conditioned on individual
words. Smit also investigated the impact of changing the
parameters of the sparse coding and dictionary learning pursuit,
and demonstrated the emergence of a dictionary containing
phoneme-like units [7].

III. IMPLEMENTATION

The development of a set of sparse codes and an associated
dictionary of atoms proceeds in an iterative fashion (shown
in Fig. 1). Starting with some initial set of codes {Sk}0,
we calculate the optimal set of atoms Φ0 corresponding to
those codes. These atoms are then used to calculate a new
set of codes {Sk}1, which are then used to recalculate a
new set of atoms Φ1. This is repeated until convergence of
C(Φn, {Sk}n).

A. Initialisation

There are many possible strategies for obtaining an initial
code for each utterance. In this study, we make the somewhat
arbitrary choice of filling each Sk matrix with ones according
to the following rules:

1) Each time frame in the utterance is given a chance
to contain a single non-zero coefficient according to
a prespecified probability Pθ, and

2) for those time instants that may contain a non-zero co-
efficient, the corresponding feature index is randomly
chosen from a uniform distribution.

The role of Pθ is to encourage an initial l0 code sparsity. It is
chosen to lead to an average “phoneme” rate roughly similar
to that of a real phoneme transcription.

B. Obtaining sparse codes

In order to generate sparse codes, we make use of the
Coordinate Descent algorithm [8], which uses the l1 norm
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Fig. 2. Overview of the dictionary update process.

as a diversity function. Coordinate Descent greedily optimises
the cost function by iteratively choosing the code coordinate
(i.e. atom and point in time) whose optimal value would yield
the largest reduction in cost. The algorithm terminates once
the relative reduction achieved by the next optimal choice of
coordinate falls below some threshold.

C. Atom updates

During the atom update stage, we would like to use the
updated codes to produce a new dictionary that further reduces
the cost function. However, the only term in C(Φ, {Sk}) that
we can optimise is the reconstruction error

R =
K∑

k=1

‖yk −Φ∗Sk‖
2
2 =

K∑

k=1

‖rk‖
2
2. (6)

The atoms are updated using a frequency-domain approach
inspired by Grosse et al [4], which recognises that R remains
invariant (up to a scaling constant), when the DFT is applied to
rk. This makes it possible to write the atom-code convolutions
as elementwise multiplications, yielding a tractable way to
solve for all φj simultaneously in a way that minimises the
reconstruction error.

In this study, each of the Nt possible time-scales at which
an atom can occur becomes a distinct atom for the purposes
of coding, and the atom update approach alluded to above
also neglects the relationship between scaled versions of the
same atom. Thus, after the scaled atoms have been updated
individually, yielding the preliminary updated atoms φj′

n , it
becomes necessary to reassert the relationship between those
that belong to a particular class. This is done without much
rigour by scaling the atoms to a common length (using spline
interpolation), and then taking a weighted average according
to the relative frequency of the scales. These prototypical base
atoms {bd} are then rescaled to all relevant lengths and made
available for coding, as shown in Fig. 2.

IV. EXPERIMENTS AND RESULTS

A. Data selection and preprocessing

The experiments performed in this study use subsets of the
TIMIT speech corpus. The 6300 utterances are divided into
three categories of sentences, which are designed to expose
different aspects of speech. These categories are:

SA Dialect sentences, which are meant to expose dialecti-

cal variation among 8 regions across the United States.

The category consists of 2 sentences spoken by all

630 speakers.

SX Phonetically compact sentences designed to provide

good coverage of phone pairs, with some emphasis on

interesting or difficult contexts. The corpus contains

450 such sentences and each sentence is spoken by 7

speakers.

SI Phonetically diverse sentences are chosen to include

diversity in sentence types and phonetic contexts and

to maximise the variety of allophonic contexts found

in a large corpus of text. The corpus contains 1890 SI

sentences and each sentence is spoken only once.

In this study, we elect to use only the phonetically diverse
(SI) sentences for training. The other categories contain so
much repetition that their inclusion might bias the development
of acoustic units that favour very specific contexts.

Before we apply sparse coding and dictionary learning
to the selected training set, the utterances are converted to
12-coefficient MFCC feature vectors using the HMM Toolkit
(HTK). The MFCCs are generated at a rate of one every 20ms,
with a window size of 32ms, resulting in a 12ms overlap
between frames. For each speaker, the utterances are pooled for
the application of a cepstral mean and variance normalisation.

B. Training overview

Using the selected data, we performed a few experiments
to identify the impact of varying the parameters available
for tuning (see Table I). For consistency, the same random
initialisation was used for each set of parameters, and a fixed
number of 20 training iterations was carried out. Each run took
approximately 2 hours to complete using 64 AMD Opteron
processor cores clocked at 2.1 GHz.

For the parameters used in this study, the training was well-
behaved and showed fast convergence. Fig. 3 shows how the
sparse coding and feature learning iteratively improves the cost-
function until it converges to some local optimum.

Fig. 4 and 5 show the effect of local variation of the
diversity penalty and number of base atoms. Unsurprisingly,
reducing the diversity penalty leads to codes that are less
sparse and therefore a more accurate reconstruction. In most
cases, increasing the number of base atoms yielded an im-
provement in the reconstruction error, with the exception of
(β = 8, D = 70). This may be symptomatic of numerical
problems with the exact solver used for the feature updates,
since much more severe instability was encountered in the cost
function for larger values of Nφ and D. Curiously, increasing
the number of base atoms also yielded an increase in the
number of non-zero code coefficients that was being used by
the converged solution.

Fig. 6 shows two of the atom dictionaries learned by our
sparse coding and dictionary learning system. It is apparent
that the atoms encode quite a bit of context to the left and right
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TABLE I. TRAINING PARAMETERS

Parameter Description

β Diversity penalty

Nφ Maximum atom scale (number of frames)

D Number of base atoms
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Fig. 3. Development of reconstruction error, code sparsity and cost function
for β = 9, Nφ = 20 and D = 50.

of the recognisable steady state areas. This seems to suggest
that our system is more suitable to the discovery of context-
dependent diphones or triphones.

C. Coincidence with reference phonemes

In this section, we examine the relationship of our trained
dictionary with the reference set of phonemes and transcrip-
tions provided by TIMIT. Since we did not attempt to infer an
optimal alignment between our sparse codes and the reference
phoneme transcriptions, we simply count the number of times
a non-zero coefficient corresponding to any given base atom
occurs within a reference phonemic boundary. Those counts
are then recorded in a 2D histogram which we call the
coincidence matrix. In order to make it more graphically
interpretable, the histogram is normalised so that the bins
corresponding to each reference phoneme sums to one.

A disadvantage of this approach is that the coincidence
matrix inevitably gets muddied by phonemic context—we are
not just seeing which atoms are most frequently used to code
certain phonemes, but also which atoms are often used just
before or after a certain phoneme.

Fig. 7 shows one such coincidence matrix. There are
noticeable hotspots where one phoneme is strongly coded by a
small number of atoms. There are also many phonemes that are
broadly coded using many different atoms. In each case no par-
ticular atoms have developed that cater well for all occurrences
of the phoneme. Overall, it is reasonable to conclude that at
least some of the atoms learned are phonetically relevant.
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Fig. 4. Terminal normalised reconstruction error vs. number of base atoms
for various values of β. Nφ is set to 20.
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Fig. 5. Number of coefficients used vs. number of base atoms for various
values of β. Nφ is set to 20. For comparison, the dataset contains 56377
reference phoneme instances.

D. Usefulness to the generation of pronunciation dictionaries

In order to use the resultant sparse codes and corresponding
atom dictionaries to generate pronunciation dictionaries using
the atoms as sub-word units, it is necessary that the sparse
codes represent a reasonable segmentation of the acoustic data.
At the very least, the sub-word units should not overlap in time.

We use a straightforward method to measure overlap: for
each unique pair of non-zero code coefficients, we count the
number of frames that overlap and add that to a running total.
In order to compare the level of overlap between utterances of
different lengths, the overlap score is normalised by the length
of the utterance.

Fig. 8 shows the average overlap scores for each set of
parameters used in this study. In all cases, the overlap scores
are much larger than unity, implying that the equivalent of
each frame in the utterances is being coded (on average) by
several atoms. Clearly, the sparsity constraints we impose are
not sufficient for a coding to arise that is localised enough
in time to be useful for segmentation. It may be necessary
to include a penalty term in the cost function to achieve a
reduction in overlap.

The second requirement we place on our sparse codes and
atoms for them to be fit for the generation of pronunciation
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Fig. 6. Mel spectrogram representation of base atom dictionaries at the end
of training. Lower frequencies are at the bottom.
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Fig. 7. Coincidence matrix for β = 10, Nφ = 20 and D = 60.

dictionaries, is that utterances that sound the same should be
transcribed in the same way using our atoms. If that is not
possible, we could end up with an impractically large set of
competing pronunciations. Of course, not even the reference
phonetic transcriptions for TIMIT are perfectly consistent for
utterances with identical orthography, and multiple pronuncia-
tions for words often exist. Hence, it is important to establish
a baseline consistency score.
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Fig. 8. Normalised overlap scores for various training parameters.

TABLE II. BASELINE CONSISTENCY SCORES USING REFERENCE

PHONEME TRANSCRIPTIONS

SA1 SA2

Overall 0.221 0.232

New England 0.240 0.230

Northern 0.204 0.208

North Midland 0.204 0.222

South Midland 0.216 0.242

Southern 0.231 0.249

New York City 0.209 0.229

Western 0.218 0.237

Army Brat 0.205 0.207

A consistency score between two sparse codes can be
obtained by calculating the Levenshtein (edit) distance between
the corresponding sequences of base atoms, after they have
been sorted according to their midpoints. We normalise the
obtained edit distance by the length of the longer sequence,
so that we have a score between 0 (when the sequences are
exactly the same) and 1 (when there is no commonality at
all). When we have multiple sequences to compare, we obtain
a within-class consistency score by calculating the mean edit
distance across all pairs of sequences corresponding to the
same orthographic transcription.

We perform our consistency experiment on utterances from
the SA dataset. This set contains only two orthographically
unique sentences, and is spoken by all speakers in the TIMIT
corpus. Table II contains the overall consistency scores of the
reference transcriptions for these two utterances, as well as
a breakdown per dialectical region. We then calculate sparse
codes for the SA utterances using the base atoms learned in
our previous experiments, and score them for consistency. Fig.
9 plots these scores, which range from 0.778 to 0.816. These
figures indicate a consistency that is far too poor to be used
to generate a compact pronunciation dictionary. Clearly there
is a big margin for improvement.

The excessive level of overlap seen across all experiments
may be partly to blame for this. We hypothesise that allowing
the system the freedom to develop codes with highly overlap-
ping atom use may preclude the development of atoms that
are sufficiently able to represent temporally isolated acoustic
events, which may in turn lead to a poorer consistency score.
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Fig. 9. Average consistency scores on the SA dataset with atoms learned in
previous experiments.

V. CONCLUSION

We found that it is possible to use sparse coding and
dictionary learning to discover phonetically relevant units in
acoustic data. However, the usefulness of these units for gener-
ating pronunciation dictionaries is limited by the development
of a segmentation that is not sufficiently localised in time
and a transcription that is too inconsistent for utterances that
are orthographically identical. In order to improve this, our
ongoing work is considering ways to encourage codes that
use atoms in a non-overlapping fashion.
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