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Abstract

The radar literature contains numerous examples of non-linear frequency modulated (NLFM) waveforms where the majority of
the modulation functions are either implemented under the assumption that the radar can afford to have a large time-bandwidth
product (TBP) or make use of mathematical operations that are difficult to parameterise. Although this allows good performance
at a high TBP, these modulation functions perform poorly at a low TBP where commercial off-the-shelf (COTS), short-range and
low-power software-defined radio (SDR) based radars operate. These SDR radars have limited bandwidth due to low sampling
rates and performance suffers further when transmitting over short distances in scenarios where pulsed operation is required.
This paper develops and compares various multi-parameter, optimisable NLFM waveforms based on parametric functions such
as Bézier curves and the inverse logistic function (logit). Low order Bézier curves are found to give insight into the optimisation
space, but the logit based NLFM and 8th order Bézier waveforms are shown to have the best performance. We conclude that the
proposed NLFM waveform is attractive when considering radar applications using low cost SDR platforms.

1 Introduction

The pulse compression (PC) waveform chosen in a radar has a
substantial effect on the radar’s target detection performance.
This is due to the large number of possible waveforms and
the effect of each waveform on the temporal response of the
PC stage in the signal processing pipeline. The resultant main
lobe width (MLW) affects the range resolution and the peak
sidelobe (PSL) level affects the detection of low radar cross-
section (RCS) targets in the presence of high RCS targets or
clutter. Both of these variables can be adjusted by modification
of the transmitted waveform and/or modification of the receive
PC filter. However, many of these techniques require a mis-
match between the transmitted and received waveform which,
in turn, causes a signal-to-noise ratio (SNR) loss relative to the
theoretical maximum achievable SNR gain for a given TBP [1],
[2].

Numerous PC waveforms have been developed [3]-[5], the
majority of which revolve around certain assumptions and
mathematical operators. It is therefore difficult to add parame-
ters to the process due to the inflexible nature of these designs.
In addition to this, if the radar violates the assumptions made in
the design process it will not perform as expected. One preva-
lent assumption is that the radar operates in the high TBP
regime, which is the case for most high performance, long-
range radars. However, in short-range, pulsed applications the
TBP is highly constrained, especially when making use of low
cost Software Defined Radio (SDR) platforms. It is therefore

necessary to develop a PC waveform that is not based on the
assumption of high a TBP.

2 Baseline Pulse Compression Waveforms

In order to measure the performance of the PC waveforms,
some existing candidates are chosen for comparison. Linear
frequency modulation (LFM) is used as a baseline since it
is the simplest form of modulation. The LFM waveform has
the drawback that its sidelobe performance is poor, with the
first sidelobe being 13 dB below the peak, although it has the
narrowest achievable MLW. A NLFM waveform presented by
Les$nik [3] is used as a second baseline and an example of
a mathematically-developed NLFM waveform that performs
well at a high TBP.

2.1 Linear Frequency Modulation

The LFM is given by:

t
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where fzy is the desired bandwidth of the signal.
2.2 Lesnik NLFM

Lesnik [3] proposes a NLFM waveform that is calculated using
the Zak transform. The frequency modulation is given by:
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3 Proposed Single Parameter Waveforms

In this section we propose two low complexity NLFM wave-
forms that are described as a function of a single parameter.

3.1 Logit

The logit is the inverse of the logistic function. It is presented
in a form that allows it to be used for frequency modulation and
is given by:
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where p is the tuning parameter and fpyw is the signal band-
width. A higher value of p corresponds to a higher non-
linearity. It is scaled using Eq. 6 so that the linearity can scale
linearly and a value of O corresponds to an LFM waveform,
which makes the parameter easier to interpret.

3.2 Hyperbolic Sine

The hyperbolic sine (sinh) is also presented in a parametric
form similar to Eq. 3. It is given by:
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where p is the tuning parameter, similar to Eq. 6, and fgy is the
signal bandwith.

3.3 Comparison of Single Parameter PC Waveforms

Fig. 2 compares the low TBP pulse compression of the four
waveforms mentioned so far. This figure illustrates some prob-
lems encountered when designing pulse compression wave-
forms. The Les$nik waveform does not perform as well as
expected, since it is evaluated here at a much lower TBP com-
pared to that for which it was designed [3]. Although both the

sinh and logit waveforms are optimised for a low PSL, it is
clear that their MLW are drastically different and this effect
will be investigated further in the following sections. In addi-
tion to this, these waveforms are very limited in their shapes
and a more flexible waveform design methodology can yield
better results.
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Fig. 1: The frequency modulation of the four waveforms dis-
cussed in Sec. 2 and 3.
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Fig. 2: A comparison of the PC of the four waveforms in Sec. 2
and 3. Both the logit and sinh are optimised for a low PSL at a
TBP of 66 (bandwidth = 20MHz, transmission time = 3.33 us
and f, =50 MHz). The logit function parameter p is 2.282 and
the sinh parameter p is 4.798.

4 Bézier Curves

Bézier curves [6] are a technique that is regularly used in com-
puter graphics environments to define a curve using a series
of vertices. It has previously been applied to radar waveform
design in [7] and [8]. The number of vertices can be changed,
allowing for the development of a waveform design technique
with a varying number of parameters. The simplest Bézier
curve has three vertices, at (0, -1), (0.5, 0) and (1, 1), giving
a normalised LFM waveform. Conjugate vertices can be added
to increase the complexity and non-linearity of the modulation.
The explicit form of the Bézier curve is given by
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where P; is the vertex describing the Bézier curve and n is
the order of the curve, which is one less than the number of
vertices. For an initial investigation, a 4™ order Bézier curve
is used, because it allows the parameter space to be visualised
in three dimensions since the x and y coordinates of only one
vertex are varied. This vertex is mirrored from the positive fre-
quency quadrant to the negative frequency quadrant to enforce
symmetry in the time-frequency curve. An example can be seen
in Fig. 3.

4th Order Bézier Example

1.0
0.5F
> 0.0
05L
-Curve
1.0k Vertices
T T T T
-1.0 -0.5 0.0 0.5 1.0

X

Fig. 3: An example of a waveform constructed using a 4th order
Bézier curve.

Our first step was to calculate the PSL level of the wave-
form as the Bézier vertex position (x,y) is varied. A surface
plot of these results can be seen in Fig. 4. It is highly non-
linear because the sidelobe closest to the main lobe merges
with the main lobe as the vertex varies, causing the PSL cal-
culation algorithm to ignore the merged sidelobe. Instead, the
next adjacent sidelobe is now regarded as the new PSL, leading
to a discontinuity. It is therefore also necessary to include the
zero-to-zero (0-0) MLW in the optimisation algorithm.

The 0-0 MLW plot is shown in Fig. 5 and is also highly
non-linear for the same reasons mentioned for the PSL plot.
To gain a better understanding of the effect of the Bézier vertex
coordinate on the MLW and PSL, both plots are overlayed as a
contour plot in Fig. 6.

From Fig. 6 we see there is an area in which the PSL
drops drastically, but, according to Fig. 5, to reach that area
the MLW must increase. Upon further investigation, it is clear
that the 4" order Bézier curve is not capable of generating
high-performance waveforms, although the performance sur-
face gives insight into the non-smooth characteristics of the
optimisation problem. Fig. 7 shows the possible performance
that a 4™ order Bézier curve is able to achieve with a varying
vertex. We see that it is not able to surpass the performance
of the optimised logit waveform. It is, therefore, necessary to
investigate the performance of higher-order Bézier curves and
this requires an optimisation algorithm.
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Fig. 4: The PSL of a 4" order Bézier waveform where P, in Eq.
10 is varied. The waveform has the same specifications as the
waveforms in Fig. 2.

Bézier Main Lobe Width Performance Surface
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Fig. 5: The main lobe width of a 4" order Bézier waveform
where P; in Eq. 10 is varied. The waveform has the same spec-
ifications as the waveforms in Fig. 2.

S Optimisation and Results

The vertices of the Bézier curve minimising the MLW and
PSL can be determined to find an optimal PC waveform. This
multi-objective optimisation problem has conflicting objec-
tives; vertices resulting in favourable values for the PSL often
correspond to unfavourable values for the MLW (see Fig.
4 through 7). The fitness function given by Eq. 11 is used
to combine the two objectives such that compatibility with
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Fig. 6: The PSL (Fig. 4) and MLW (Fig. 5) plots overlayed as
contour plots.
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Fig. 7: The performance space (PSL and MLW), with x and
y coordinates varied, for a 4" order Bézier curve. The logit
(optimised for PSL) is shown for reference.

single-objective optimisation methods is obtained.

Fitness = aPSL + L,

MLW B €(0,00),
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The aim of the optimisation algorithm is to maximise the fit-
ness function, which simultaneously minimises the PSL and
MLW. The fitness function is non-convex, non-smooth and
potentially high-dimensional. Furthermore, its derivatives with
respect to the vertices of the Bézier curve are not available.
Gradient-based optimisation methods, such as stochastic gra-
dient descent, are therefore not appropriate. Derivative-free
optimisation methods that broadly emulate gradient descent
such as the Nelder-Mead method [9] are prone to being cap-
tured by local minima and are thus not recommended for
non-convex functions [10]. Brute force techniques become
increasingly unfeasible for higher-order Bézier curves due to
a combinatorial explosion of the problem’s complexity.
Taking the aforementioned characteristics into considera-
tion, particle swarm optimisation (PSO) [11] was chosen to
maximise the fitness function. Each particle in the swarm is
incentivised to explore the search space by means of an attrac-
tion factor towards the best position visited by itself while
concurrently being drawn to better regions via an attraction fac-
tor towards the best global position visited by any particle in the

a € (—0,0),

swarm. Particles can often navigate non-convex fitness func-
tions without becoming stuck on local maxima by retaining
momentum during position updates. PSO is implemented in the
Julia language [12] using Optim.jl [13] within an optimisation
framework provided by Hyperopt.jl [14].

The optimiser was run for the same specifications as the
waveforms in Fig. 2 and the results are presented in Fig. 8, 9
and Tab. 1. The 4" order waveform performs poorly, but there
is a large increase in performance when moving to the 6" order
waveform. Increasing the order further has little to no effect on
the performance of the waveform at this TBP.

From the MLW in Tab. 1 and the spectra in Fig. 10 it can be
seen that the optimisation process reduces the effective band-
width of the waveform, thus reducing its range resolution and
increasing its MLW.
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Fig. 8: A comparison of the optimal frequency modulation
determined for different orders of Bézier curves. The wave-
forms have the same specifications as those in Fig. 2.
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Fig. 9: Pulse compression for the waveforms shown in Fig. 8.

6 Conclusion

The aim of this paper was to develop a non-linear frequency
modulated (NLFM) waveform design methodology in the low
time-bandwidth product (TBP) regime that is based on param-
eterised functions and can thus be easily optimised. Pulse com-
pression waveforms based on optimised Bézier curves were
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Fig. 10: The frequency spectra for the PC waveforms shown in
Fig 8.

Table 1
SLL and MLW for various considered PC waveforms. All

waveforms have a bandwidth of 20 MHz and transmission
time of 3.33 us. The 0-0 MLW is given when sampled at the
Nyquist frequency. The different Bézier waveforms represent
the various orders and different results from the optimisation
algorithm.

Waveform  PSL [dB] MLW [samples]
LFM -14.29 2.4
Logit -36.84 12
Sinh -40.9 52
Lesnik -41.1 68
Bézier (4) -35.89 26.4
Bézier (4) -27.45 6.4
Bézier (6) -38.26 12.8
Bézier (6™) -37.85 12.0
Bézier (6™) -36.81 9.6
Bézier (8") -38.47 12.0
Bézier (8) -38.10 11.2
Bézier (10%)  -38.31 12.0
Bézier (10%)  -38.16 11.2

found to offer improved performance over baseline methods
that are effective at higher TBP.

Interestingly, the NLFM waveform based on the logit func-
tion exhibited MLW and PSL performance on par with the best
Bézier based waveform for the specific TBP chosen, but this is
not the case for all TBP. Thus, the logit is a better option in this
case given the simplicity of implementation.

7  Future Work

In ongoing work we plan to extend the performance metrics
to include the -3 dB MLW, as well as integral metrics on the
sidelobe region. The current analysis should also be extended
to include a spread of TBP values. Furthermore, investigations
can be conducted into optimising higher-order Bézier curves
and comparing the results to a variety of NLFM waveforms.
This form of optimisation will also be extended to polyphase

sequences and compared to results from [15] over a range of
TBW values.

Due to the fact that the spectra of the NLFM waveforms are
narrow compared to that of the LFM waveform, a utilised band-
width measure, such as occupied bandwidth, can also be added
to the set of metrics used by the optimisation process.
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