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Abstract—Coughing is a common symptom of respiratory
diseases and in the past, its audio and acoustic properties have
been used to detect those diseases. In this study, we first show
that cough patterns can also be successfully used to detect a
respiratory disease such as tuberculosis (TB). For this purpose,
we have used the vocal audio recordings of 15 TB and 33
non-TB patients, who were sick from other lung ailments. They
were asked to cough, take a few deep breaths and cough
again, thus producing at least two bouts of coughs. NLP-style
cough embedding was invented to preserve the occurrence and
sequence of every cough event with a sampling rate of 1 kHz. In
total, almost 2 hours of cough embedding were used as feature
vectors to train and evaluate four shallow (LR, SVM, KNN,
MLP) and two deep architectures (CNN, LSTM) using a nested
cross-validation scheme. Imbalance in our dataset was addressed
by applying SMOTE and using AUC as the performance metric.
We have also experimentally extracted MFCC, ZCR and kurtosis
from the audio recording of the cough embedding and compared
the performance of the classifiers while trained on these audio
features. The results show that an LSTM performed the best by
producing an AUC of 0.81 while using the cough embedding
to discriminate TB; whereas a CNN performed the best by
producing the highest AUC of 0.71 using the audio features. We
show that this way of detecting TB using cough embedding due
to its unique pattern preserves privacy, as they do not require
the cough audio to be analysed and can be fused as an additional
tool to improve the TB cough audio classification even further.

Index Terms—tuberculosis, cough, NLP, machine learning,
LSTM
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I. INTRODUCTION

Tuberculosis (TB) is one of the major respiratory diseases
which affects our lungs and breathing systems and is respon-
sible for 95% of deaths due to all respiratory diseases in
developing countries [1]. TB is common in poorer countries
and the modern diagnostic tests are costly as they rely on
special equipment and laboratory procedure [2] and many
suspected patients actually do not suffer from TB. Currently,
programmatic screening for TB relies on self-reported symp-
toms, which are non-specific, resulting in vast over-referral
for GeneXpert testing, and thereby unnecessary expenditure
[3]. Thus, there is a need for a more specific, low-cost,
point-of-care screening test which would allow more efficient
application of subsequent molecular testing.

Coughing is a common symptom of respiratory disease
and its audio and acoustic properties have been successfully
used in the past to discriminate respiratory diseases such as
TB and COVID-19 [4]–[6]. Here, in this study we show
that discrimination is also possible by finding the patterns
in which a patient coughs when he is asked to cough, take
a few deep breath and cough again by healthcare workers
at a recording site inside a healthcare clinic. We propose a
new cough embedding technique, which is similar to the word
embedding in a natural language processing (NLP) system. We
successfully demonstrate that using cough embedding as the
features to train and evaluate machine learning classifiers can
be applied as a low-cost, point-of-care screening test, and de-
ployed as a standalone application or fused to the audio-based
TB discrimination [5] for improved TB classification.

II. DATA

A. Recording setup

The recordings were collected between 10 am and 4 pm in
an outside cross-ventilated sputum collection booth inside a
busy primary healthcare clinic near Cape Town, South Africa,
representing a real-world setting where an automatic TB test
would likely be deployed, as shown in Fig. 1 and Fig. 2 of
[5]. All participants were suffering from some sort of lung
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Fig. 1. Feature extraction process. The ELAN screenshot of an audio recording from a patient shows that the initial cough embedding before padding is
(t

CN
2 − tC1

1 ) sec long. Each annotated cough is noted as Ci and there are total N number of coughs from the patient. Audio features such as MFCC, ZCR
and kurtosis are also extracted from the audio segment of the cough embedding, where only cough audio is preserved and everything else is kept as silence
(zeros). We experimentally find that an LSTM has produced the highest AUC of 0.81 while using cough embedding as features (Table IV).

TABLE I
DATASET DESCRIPTION. THIS IS THE DATASET WHICH IS USED TO CREATE COUGH EMBEDDING AND FINALLY TO TRAIN AND EVALUATE THE MACHINE

LEARNING CLASSIFIERS.

Number of Number of Average Number Total length Average length Total length of Average length of
Patients Coughs of Coughs of Coughs of Coughs Cough Embedding Cough Embedding

TB 15 354 23.6±10.5 4.47 min 17.86±6.81 sec 26.5 min 1.77±0.79 min
Non-TB 33 881 26.7±10.7 11.23 min 20.42±8.75 sec 1.14 hr 2.08±0.7 min

Total 48 1235 25.73±10.71 15.7 min 19.62±8.28 sec 1.59 hr 1.98±0.74 min

anomalies and all of them were TB suspects, as they had cough
as their self-reported symptom. They were only diagnosed for
TB by standardised methods in this study and diagnosing other
diseases apart from TB were impractical to collect. Patients
were formally interviewed by the healthcare workers and their
inclusion and exclusion criteria are listed in Table 1 of [5]. All
of them provided their informed consent and this study was
approved by the Faculty of Health Sciences Research Ethics
Committee of Stellenbosch University (N14/10/136) and the
city of Cape Town (10483).

A mobile recording equipment consisting a RØDE M3
microphone and a ZOOM F8N field recorder was used to
record each patient at a sampling rate of 44.1 kHz. A standard
N95 mask, which was replaced after each patient, covered the
condenser microphone and the gap between the patient and
the microphone was maintained between 10 and 15 cm. Each
patient was asked to count, cough, take a few deep breaths and

cough again without any interruption in the audio recording.
This produced at least two bursts of voluntary coughs, as all
patients in our study were suffering from a respiratory disease
thus producing coughs automatically due to the irritation in
their respiratory system [7].

B. Annotation

The multimedia software ELAN [8] was used to manually
annotate the coughs with the label ‘c’ in the audio recording,
as shown in Fig. 1. The initial listening revealed that a single
cough event often contains multiple cough onsets or cough
episodes and the episodes which appear on a single breath out
of the patients were annotated as a single cough event.

C. Data description

Table I describes the dataset used for feature extraction and
classifier training. There were 354 and 881 coughs recorded



from 15 TB and 33 non-TB patients respectively i.e. 1235
coughs in total. The average number of coughs for TB and
non-TB patients are 23.6 and 26.7 with a standard deviation
(SD) of 10.5 and 10.7 respectively. There are 4.47 minutes
of TB coughs and 11.23 minutes of non-TB coughs with
an average 17.86±6.81 sec of coughs per TB patient and
20.42±8.75 sec of coughs per non-TB patient. The lengths
of cough embeddings are 26.5 minutes and 1.14 hour for the
TB and non-TB patients, respectively. The average length of
cough embedding from TB patients is 1.77 min with a SD of
0.79 minutes and 2.08 min with SD of 0.7 minutes for non-TB
patients. The shortest cough embedding has been 33.8 sec and
the longest cough embedding has been 3.93 minutes, which
reveals the diversity in our dataset, shown in Fig. 2.

Table I reveals an imbalance between the TB and non-TB
distribution. This imbalance was addressed by using AUC
as the performance metric, which has a higher degree of
discriminancy than some other popular existing performance
metrics such as accuracy and applying synthetic minority
oversampling technique (SMOTE) [9] to create new data
points inside the cross-validation training folds so that deep
neural network (DNN) classifiers can perform better [6], [10].

Fig. 2. The distribution of the lengths of the TB and non-TB cough
embeddings. The medians and the quartiles of the non-TB cough embedding
are longer than TB cough embedding.

III. FEATURE EXTRACTION

We have extracted both NLP-style cough embedding and
audio features from the recordings. We note each annotated
cough as Ci, where i = 1, 2, . . . , N and N is the total number
of coughs produced by a patient in the recording. We also
noted the cough Ci starts at tCi

1 and ends at tCi
2 . The time

gap between two consecutive coughs, Ci and Ci+1, is noted
as ∆j , where j = 1, 2, . . . , (N − 1).

A. NLP-style cough embedding

Word embeddings in NLP are some of the most popular
methods in biomedical applications [11] and they are usu-
ally the low-dimensional features used to train and evaluate
machine learning classifiers [12]. The word embeddings are
generated for each word in a sentence and each unique
word corresponds to an unique value [13]. Being inspired by

the word embedding, we have developed cough embedding,
which is a technique to specifically preserve the sequence and
timing information of the cough occurrences in a long audio
recording. Whereas a large data corpus can contain millions
of these unique words [14], our cough embedding contains
only two symbolic words: ‘cough’ (Ci) and ‘no-cough’ (∆j),
as explained in Fig. 1.

Cough embedding feature vector is created between the
initial cough C1 and the final cough CN . For each cough Ci,
‘1’ has been generated and ‘0’ has been generated for each
‘no-cough’ ∆j , both with the sampling frequency 1 kHz, and
finally concatenated together to produce (tCN

2 − tC1
1 ) sec or

(tCN
2 − tC1

1 )× 1000 sample long initial cough embedding.
In word embedding, it is also a common practice to use

zero-padding due to the different lengths in the sentences [15].
We have induced the same principle and all cough embeddings
have been padded by adding zeros at the end to make the final
length of 3.93 minutes or 235750 samples long. Thus, the final
cough embedding in samples after zero-padding is:

R(t) = (tCN
2 − tC1

1 )× 1000 + Λc (1)

where Λc is the length of zeros padded at the end and R(t)
is the feature vector fed into the classifiers.

B. Features extracted from the audio

We have also used the audio of the coughs preserving
their time-domain patterns to extract features to compare the
performance of cough embedding. We have used the audio for
each cough Ci, sampled at 44.1 kHz and the ∆j is replaced by
silence (zeros), sampled at 8 kHz, as our initial experiments
revealed that using a sampling rate much lower than the
original sampling rate of 44.1 kHz does not decrease the
classifier performance, rather shortens the classifier training
time. Thus, the audio used for feature extraction is noted as:

A(t) =

N∑
i=1

(tCi
2 − tCi

1 )× 44100 +

N−1∑
j=1

∆j × 8000 + Λa (2)

where, Λa is the zero-padding. We note that the sample length
of A(t) is 3134170 i.e. Á = 3134170.

Features such as mel-frequency cepstral coefficients
(MFCCs) along with their velocity and acceleration coef-
ficients, zero-crossing rate (ZCR) and kurtosis [16] were
extracted. MFCCs performed better than the linearly-spaced
log filerbanks [4] in our previous TB [5] and COVID-19 [6],
[10] classification tasks and have also been proved to be very
useful in both detection and classification of voice audio such
as speech [17] and coughs [18].

The number of lower order MFCCs (M) and the sample
length of frames used to extract features (F) are the hy-
perparameters which were optimised inside a nested cross-
validation scheme and are mentioned in Table II. The table
shows that M has two values: 13 and 26. Unlike our previous
experiments [6], [10], we did not use any higher MFCC
dimension than 39 in this study, as the initial experiments
also revealed no performance improvement for using higher



dimensional MFCCs. The frame lengths are varied between
512 and 2048 samples.

Unlike cough embedding, which is a feature vector, the ex-
tracted audio features here are a feature matrix with dimension
of (3M+ 2, 4×Á

F ), as the hop-length was set to F
4 .

TABLE II
FEATURE EXTRACTION HYPERPARAMETERS. BY VARYING THE MFCCS

BETWEEN 13 & 26 AND FRAME LENGTHS BETWEEN 512 & 2048, THE
SPECTRAL RESOLUTIONS OF THE AUDIO HAVE BEEN VARIED.

Hyperparameters Description Range

MFCCs (M) lower order MFCCs to keep 13× k, where
k = 1, 2

Frame length (F) Length of frames (in samples) 2k , where
used to extract features k = 9, 10, 11

IV. CLASSIFICATION PROCESS

A. Classifier Architectures

We have used logistic regression (LR), k-nearest neighbors
(KNN), support vector machine (SVM) and multilayer per-
ceptron (MLP) as shallow classifiers due to their effectiveness
in detecting and classifying cough events [19]–[24]. We have
experimentally found that shallow classifiers outperform the
deep architectures when the data are small [5]. LR is a
simple classifier but has been proved to be more effective than
more complex classifiers such as SVM, random forests and
classification trees in clinical prediction tasks [4], [25].

We have also used convolutional neural network (CNN) [26]
and long short-term memory (LSTM) [27] as two deep archi-
tectures, as they were successfully applied both in classifying
and detecting TB and COVID-19 coughs from both the healthy
coughs, sick coughs and from each other [6], [28], [29]. As
cough embedding is a feature vector, we applied 1-dimensional
CNN (CNN-1D) and as audio features are feature matrix, we
applied the traditional 2-dimensional CNN (CNN-2D).

B. Hyperparameter optimisation

As our dataset is small, a stratified k-fold (nested) cross-
validation scheme [30], [31] was implemented to make the
best use of our dataset along with GridSearchCV to optimise
the hyperparameters, mentioned in Table III. The DNN clas-
sifiers were created using the TensorFlow pipelines [32] and
optimised using Keras GridSearchCV [33]. We have used a
five-fold cross-validation, due to its effectiveness in medical
applications [34].

C. Classifier evaluation

The area under the receiver operating characteristic (ROC)
curve (AUC) score has been the optimisation criteria among
the cross-validation folds and the performance-indicator of
the classifiers [35]. The average AUC score along with its
standard deviation (σAUC) and the F1-scores [36] over the
outer folds during cross-validation are shown in Tables IV.
Hyperparameters producing the highest AUC over the inner
folds of the cross-validation scheme have been noted as the
‘best classifier hyperparameters’ in Table IV.

TABLE III
CLASSIFIER HYPERPARAMETERS, OPTIMISED USING A NESTED

CROSS-VALIDATION SCHEME.

Hyperparameters Classifier Range
Shallow classifiers

Regularisation (α1) LR, SVM 10−3 to 103

l1 penalty (α2) LR 0 to 1 in steps of 0.05
l2 penalty (α3) LR 0 to 1 in steps of 0.05
No. of neighbours (α4) KNN 10 to 100 in steps of 10
Leaf size (α5) KNN 5 to 20 in steps of 5
Kernel Coefficient (α6) SVM 10−3 to 103

No. of neurons (α7) MLP 10 to 100 in steps of 10
l2 penalty (α8) MLP 10−4 to 104

DNN classifiers
Conv-1D filters (β1) CNN 3× 2k where k = 5, 6, 7

Conv-2D filters (β2) CNN 3× 2k where k = 6, 7, 8
Kernel size (β3) CNN 2 and 3
Dropout rate (β4) CNN, LSTM 0.1 to 0.5 in steps of 0.2
Dense layer units (β5) CNN, LSTM 2k where k = 4, 5

LSTM units (β6) LSTM 2k where k = 5, 6, 7

Learning rate (β7) LSTM 10−k where, k = 2, 3, 4

Batch Size (β8) CNN, LSTM 2k where k = 5, 6, 7

V. RESULTS

All our classifiers are trained and evaluated using both
cough embedding and audio features. The results are shown
in Table IV and the ROC curves of the best performances are
shown in Fig. 3.

Fig. 3. The ROC curves for diagnosing TB in cough patterns: The AUC
of 0.81 and 0.76 are achieved from the LSTM and MLP while using cough
embedding. The highest AUC of 0.72 is achieved from the CNN while using
the audio features such as MFCC, ZCR and kurtosis.

A. TB Classification using cough embedding

LR has achieved the AUC of 0.69 with the σAUC of 0.04,
whereas SVM and KNN have performed better by producing
an AUC of 0.73 and 0.74 respectively and an F1-score of
0.72. An MLP has performed the best amongst all the shallow
classifiers by producing the highest AUC of 0.76 (Fig. 3).

Both CNN-1D and LSTM classifiers have performed better
than the shallow classifiers. CNN has produced an AUC of
0.78 and this is significantly outperformed by the LSTM as it
produced the highest AUC of 0.81 with a σAUC of 0.08 while
detecting TB in cough patterns using cough embedding.



TABLE IV
DETECTING TB IN COUGH PATTERNS: THE LSTM HAS PERFORMED THE BEST BY PRODUCING THE MEAN AUC OF 0.81 WITH σAUC OF 0.08 USING

COUGH EMBEDDING. THE CNN HAS OUTPERFORMED THE OTHER CLASSIFIERS BY ACHIEVING THE HIGHEST MEAN AUC OF 0.72 ALONG WITH THE
σAUC OF 0.05 USING THE AUDIO CLASSIFIERS.

Classifier Best Feature Best Classifier Hyperparameters Performance
Hyperparameters (Optimised inside nested cross-validation) AUC σAUC F1-score

Cough Embedding
LR — α1 = 0.01, α2 = 0.6, α3 = 0.4 0.69 0.04 0.67

SVM — α1 = 0.1, α6 = 10 0.73 0.06 0.72
KNN — α4 = 20, α5 = 5 0.74 0.06 0.72
MLP — α7 = 60, α8 = 0.001 0.76 0.05 0.75

CNN-1D — β1 = 64, β3 = 2, β4 = 0.3, β5 = 16, β8 = 64 0.78 0.07 0.78
LSTM — β4 = 0.3, β5 = 16, β6 = 64, β7 = 0.01, β8 = 64 0.81 0.08 0.79

Audio Features
LR M = 13,F = 1024 α1 = 0.001, α2 = 0.45, α3 = 0.55 0.61 0.04 0.60

SVM M = 13,F = 1024 α1 = 10, α6 = 0.01 0.61 0.05 0.61
KNN M = 13,F = 1024 α4 = 40, α5 = 15 0.64 0.05 0.62
MLP M = 13,F = 1024 α7 = 50, α8 = 0.01 0.66 0.05 0.63

LSTM M = 13,F = 512 β4 = 0.3, β5 = 16, β6 = 128, β7 = 0.001, β8 = 128 0.71 0.06 0.71
CNN-2D M = 26,F = 512 β2 = 128, β3 = 2, β4 = 0.3, β5 = 32, β8 = 64 0.72 0.05 0.71

B. TB Classification using audio features

Here, the LR and SVM have produced the AUC of 0.61,
whereas the KNN and MLP have produced the AUC of 0.64
and 0.66 respectively with the σAUC of 0.05. Again, DNN
classifiers performed better than the shallow classifiers. This
time the CNN-2D has produced the highest AUC of 0.72 along
with σAUC of 0.05 and this performance is marginally better
than the LSTM, as it produced the AUC of 0.71.

VI. DISCUSSION

Table IV demonstrates that it is possible to discriminate
TB in cough patterns using both cough embedding and audio
features, although the performance is significantly better while
the prior is used. In both cases, DNN classifiers outperformed
the shallow classifiers and a high σAUC can be noticed in
all cases. It is also noticeable that the DNN classifiers have
performed better using the cough embedding, but it came with
the cost of higher σAUC . This indicates that although the DNN
classifiers are capable of producing higher AUC, they are also
prone to overfitting.

While using the audio features, both DNN and shallow
classifiers produced similar σAUC and the DNN classifiers
have performed better than the shallow classifiers. Although
the performance is worse than cough embedding, using audio
features produce a more stable performance across the data in-
dicating better generalisation over the folds and the classifiers
are more robust. Recurrent neural networks such as an LSTM
performs better on feature vectors such as cough embedding,
whereas CNN performs better on feature matrix such as audio
features, consisting MFCCs, ZCR and kurtosis.

VII. CONCLUSION AND FUTURE WORK

Here in this study, we have used the cough patterns in the
audio recordings taken at a outside recording booth to discrim-
inate TB from other lung ailments. Our dataset contained 15
TB and 33 non-TB patients, who were suffering from other

respiratory disease. They asked to cough, breathe and then
cough again, thus producing at least two bouts of coughs
while standing in front of a standing microphone and field
recorder representing a real-world environment where a TB
test would likely be deployed. NLP-style cough embedding
was created in such a way that the time-domain information for
each cough occurrence and sequence are recorded. This cough
embedding is used as the features to train and evaluate both
shallow and deep architectures using a nested cross-validation
scheme. The results show that although TB discrimination was
possible in all cases, LSTM performs the best by producing
the highest AUC of 0.81. This performance is also compared
with the features such as MFCC, ZCR and kurtosis extracted
from the audio recordings of the cough embedding. This
time a CNN produced the highest AUC of 0.72. Although
the performance was worse, classifiers demonstrated better
robustness and generalisation across the cross-validation folds.

As for the future work, we are constantly increasing the
number of patients and their recordings so that the DNN clas-
sifiers and more advanced architectures such as a transformer
network can be trained for better performance. We are also in
the process of deploying the TensorFlow-based models on an
Android and iOS platform.
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M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[33] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras
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