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Abstract—We present a deep learning based automatic cough
classifier which can discriminate tuberculosis (TB) coughs from
COVID-19 coughs and healthy coughs. Both TB and COVID-19
are respiratory diseases, contagious, have cough as a predominant
symptom and claim thousands of lives each year. The cough
audio recordings were collected at both indoor and outdoor
settings and also uploaded using smartphones from subjects
around the globe, thus containing various levels of noise. This
cough data include 1.68 hours of TB coughs, 18.54 minutes of
COVID-19 coughs and 1.69 hours of healthy coughs from 47 TB
patients, 229 COVID-19 patients and 1498 healthy patients and
were used to train and evaluate a CNN, LSTM and Resnet50.
These three deep architectures were also pre-trained on 2.14
hours of sneeze, 2.91 hours of speech and 2.79 hours of noise
for improved performance. The class-imbalance in our dataset
was addressed by using SMOTE data balancing technique and
using performance metrics such as F1-score and AUC. Our
study shows that the highest F1-scores of 0.9259 and 0.8631
have been achieved from a pre-trained Resnet50 for two-class
(TB vs COVID-19) and three-class (TB vs COVID-19 vs healthy)
cough classification tasks, respectively. The application of deep
transfer learning has improved the classifiers’ performance and
makes them more robust as they generalise better over the
cross-validation folds. Their performances exceed the TB triage
test requirements set by the world health organisation (WHO).
The features producing the best performance contain higher
order of MFCCs suggesting that the differences between TB and
COVID-19 coughs are not perceivable by the human ear. This
type of cough audio classification is non-contact, cost-effective
and can easily be deployed on a smartphone, thus it can be an
excellent tool for both TB and COVID-19 screening.

Index Terms—tuberculosis, COVID-19, cough, transfer learn-
ing, deep learning, Resnet50

I. INTRODUCTION

Tuberculosis (TB) is a bacterial infectious disease which
affects the human lungs, prevalent in low-income settings and
95% of all TB cases are reported in developing countries
[1], [2]. Modern diagnostic tests are costly as they rely on
special equipment and laboratory procedure [3]–[5]. Suspected
patients are tested when they show the symptom criteria of TB
investigation and the results indicate that most of them cough
due to other lung ailments; in fact most of those TB-suspected
patients do not suffer from TB [6].

COVID-19 (COrona VIrus Disease of 2019) was declared
as a global pandemic on February 11, 2020 by the World
Health Organisation (WHO). At the time of writing, there are
513.9 million COVID-19 global cases and sadly, the pandemic
has claimed the life of 6.2 million [7]. Thus, many suspected
TB patients are very likely to be suffering from COVID-19
in developing countries and experimental evidence suggests
that healthy people cough less than those who are sick from
lung ailments [8]. Therefore, there is a need for automated
non-contact, low-cost, easily-accessible tools for both TB and
COVID-19 screening based on cough audio.

One of the major symptoms of respiratory diseases like TB
and COVID-19 is a cough [9], [10]. Depending on the nature
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of the respiratory disease, the airway is to be either blocked
or restricted and this can affect the acoustic properties of the
coughs, thus enabling the cough audio to be used by machine
learning algorithms in many studies including our own [11]–
[13] for discriminating both TB [14] and COVID-19 [15]
from healthy coughs. As TB is mostly found in developing
countries, the efforts to collect TB coughs are rare, thus TB
cough data are small and not publicly available. Successful
studies [8], [12], [16] have experimentally found that shallow
classifiers such as a multilayer perceptron (MLP) or logistic
regression (LR) model works well in detecting TB in cough
audio. However, COVID-19 cough data are widely available
[17]–[19] and many recent studies have successfully applied
neural networks [20] including deep neural network (DNN)
classifiers to detect COVID-19 in cough audio [15], [21], [22].

In this study, we present a deep learning based auto-
matic cough classifier which discriminates TB coughs from
COVID-19 coughs. We have used both public and pri-
vate datasets and synthetic minority over-sampling technique
(SMOTE) to create new datapoints to balance the datasets,
as COVID-19 coughs are under-represented in our datasets.
We have also used both AUC (area under the ROC curve)
and F1-score as the performance metric for our three DNN
classifiers: CNN, LSTM & Resnet50 and evaluated them
using nested cross-validation to make the best use of our
datasets. The highest F1-score of 0.9042 has been achieved
from a Resnet50 classifier in discriminating TB coughs from
COVID-19 coughs. Inspired by our previous research [13],
we have made use of sneeze, speech and noise to pre-train
these three deep architectures as well. This has improved
the F1-score of this two-class classification task to 0.9259
with more robust performance across the cross-validation
folds. The corresponding AUC has been 0.9245 with a 96%
sensitivity at 80% specificity, exceeding the TB triage test
requirement of 90% sensitivity at 70% specificity determined
by WHO. We have further investigated these three DNN
classifiers’ performances in a three-class classification task,
where we added healthy coughs as the third class. Initially, an
F1-score of 0.8578 has been achieved from the Resnet50 and
it has been improved to 0.8631 from the same architecture
in discriminating TB, COVID-19 and healthy coughs after
applying the transfer learning.

Section II will detail the datasets used for pre-training the
DNN classifiers and the datasets used for both two-class and
three-class classification and fine-tuning those three classifiers.
Section III explains the features extracted from the audio and
Section IV describes the classification and hyperparameter
optimisation process. Section V summarises the results and
Section VI discusses them. Finally, Section VII concludes this
study.

II. DATA

We have made use of both public and private data in this
study. Previously, we have compiled TASK, Sarcos, Brooklyn,
and Wallacedene datasets as part of the research projects con-
cerning cough monitoring and cough classification. Coswara,

ComParE, Google Audio Set & Freesound and LibriSpeech
were compiled from publicly available data.

Coughs with labels ‘TB’, ‘COVID-19’ and ‘healthy’ are
used for the classification task. Coughs were excluded from
the data used for pre-training altogether as coughs without
these three labels may originate from other diseases and
we only classified disease in both classification (two-class
and three-class) task and fine-tuning the pre-trained DNN
classifiers on cough audio. All recordings were downsampled
to 16 kHz.

Fig. 1. The audio and spectrogram of a TB positive cough.

Fig. 2. The audio and spectrogram of a COVID-19 positive cough.

A. Cough audio data for classification

The following six datasets of coughs with TB, COVID-19
and healthy labels were available for experimentation and are
described in Table I. A simple energy detector was applied
to pre-process the audio recordings of Coswara, Sarcos and
ComParE datasets by removing silence within a margin of 50
msec [11].

1) TASK dataset: This dataset contains 6000 continuous
cough recordings and 11393 non-cough events such as laugh-
ter, doors opening and objects moving. It was collected at
TASK, a TB research centre near Cape Town, South Africa
from patients undergoing TB treatment [23]. Previous re-
search indicates that cough-frequency decreases as patients’
health conditions improve [24]. Thus, the TASK dataset
was compiled to develop cough detection algorithms and
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Fig. 3. The audio and spectrogram of a healthy cough which are not much 
different from those of the TB and COVID-19 coughs, shown in Fig. 1 and Fig. 
2. A subjective test couldn’t differentiate the sick coughs from the healthy 
coughs or diagnose the disease.

monitor patients’ long-term health recovery in a multi-bed
ward environment using an external microphone attached to
a smartphone [25].

2) Sarcos dataset: This dataset was collected in South
Africa as part of our own COVID-19 research [11], [13] and
contains coughs from 18 COVID-19 positive subjects.

3) Brooklyn dataset: Cough audio was compiled from 17
TB and 21 healthy subjects to discriminate TB from healthy
cough for developing a TB cough audio classifier [8]. The
recordings were taken inside a controlled indoor booth, using
an audio field recorder and a RØDE M3 microphone.

4) Wallacedene dataset: This dataset, containing 402
coughs from 16 TB patients, was collected to extend the
previous TB cough audio classification study [8] to discrimi-
nate TB coughs from other sick coughs in a real-world noisy
environment [12]. Here, the cough recordings were collected
using an audio field recorder and a RØDE M1 microphone and
the recording process took place in an outdoor booth, located
next to a busy street [26].

5) Coswara dataset: This publicly available dataset
(https://coswara.iisc.ac.in) is compiled to develop machine
learning algorithms for the diagnosis of COVID-19 in vocal
audio [18], [27], [28]. Participants from five different con-
tinents contributed their vocal audio including coughs using
their smartphones. In this study, we used the deep coughs
from 92 COVID-19 positives and 1079 healthy subjects.

6) ComParE dataset: This dataset was presented in the
2021 Interspeech Computational Paralinguistics ChallengE
(ComParE) [19] and it contains 119 COVID-19 positives and
398 healthy subjects.

7) Summary of data used for disease classification: Table I
demonstrates that our data contain only 18.54 minutes of
COVID-19 cough audio, compared to 1.68 hours of TB coughs
and 1.69 hours of healthy coughs, indicating COVID-19
labelled data are under-represented. As such a data-imbalance
can affect the neural networks’ performance negatively [29],
[30], we have applied SMOTE [31]. This data balancing
technique creates new synthetic samples to oversample the
minor class during training. SMOTE has been successfully

applied to address training set class imbalances in cough
detection [32] and cough classification [11] in the past. TASK
dataset contains only 14 patients but the length of cough audio
per patient was much longer than the other two datasets.

The audio and spectrograms of a TB, COVID-19 and
healthy cough are shown in Fig. 1, Fig. 2 and Fig. 3. There
are very little obvious visual differences between these three
coughs. An informal subjective test was conducted where
approximately 20 university students were asked to spot the
sick and healthy coughs just by listening to these cough audio
and the results showed that human auditory system is unable
to spot any disease or differentiate sick coughs from healthy
coughs only by listening to the coughs.

B. Datasets without cough labels for pre-training

Our classifier training is limited as cough audio data is not
available abundantly. Hence, we use three other types of audio
data for pre-training and they include sneeze, speech and noise
from Google Audio Set & Freesound, LibriSpeech and TASK
datasets, as described in Table II.

1) Google Audio Set & Freesound: The Google Audio
Set has manually-labelled excerpts from 1.8 million Youtube
videos belonging to 632 audio event categories [33]. The
Freesound audio database contains tagged audio with various
noise levels, uploaded by subjects from many parts of the
world under widely varying recording conditions [34]. From
these audio, We have selected the recordings that include
1013 sneezes, 2326 speech excerpts and 1027 other non-vocal
sounds such as restaurant chatter, running water and engine
noise. This manually annotated dataset was successfully used
in developing cough detection algorithms [35].

2) LibriSpeech: The LibriSpeech corpus [36] is freely
available and contains very little noise. We have carefully
selected utterances from 28 female and 28 male speakers.

3) Summary of data used for pre-training: In total, the data
described in Table II includes 1013 sneezing sounds (13.34
minutes of audio), 2.91 hours of speech, and 2.98 hours of
noise. As sneezing is under-represented, we have again applied
SMOTE to create additional synthetic samples. In total, a
dataset containing 7.84 hours of audio recordings with three
class labels (sneeze, speech, noise) was used to pre-train three
DNN classifiers.

III. FEATURE EXTRACTION

Mel-frequency cepstral coefficients (MFCCs) along with
their velocity and acceleration coefficients, zero-crossing rate
and kurtosis [37] were extracted from the audio recordings
and these features were used for both classification and
pre-training task. The feature combination containing MFCCs
rather than linearly-spaced log filerbanks [8] showed better
performance in our previous TB [12] and COVID-19 [11],
[32] classification tasks. MFCCs are the features of choice in
detecting and classifying voice audio such as speech [38]–[40]
and coughs [35].

Overlapping frames were used to extract features, where
the frame overlap ensures that a certain exact number of
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TABLE I:
DATASETS USED IN COUGH CLASSIFICATION. THESE DATASETS CONTAIN THREE COUGH CLASSES: TB, COVID-19 AND 

HEALTHY.
Type Dataset Sampling rate No of subjects Total audio Average length Standard deviation

TB Cough

TASK 44.1 kHz 14 91 mins 6.5 mins 1.23 mins
Brooklyn 44.1 kHz 17 4.63 mins 16.35 sec 13 sec

Wallacedene 44.1 kHz 16 4.98 mins 18.69 sec 4.95 sec
Total (TB Cough) — 47 1.68 hours 2.14 min 28.37 sec

COVID-19 Cough

Coswara 44.1 kHz 92 4.24 mins 2.77 sec 1.62 sec
ComParE 16 kHz 119 13.43 mins 6.77 sec 2.11 sec

Sarcos 44.1 kHz 18 0.87 mins 2.91 sec 2.23 sec
Total (COVID-19 Cough) — 229 18.54 mins 4.85 sec 1.92 sec

Healthy Cough

Coswara 44.1 kHz 1079 0.98 hours 3.26 sec 1.66 sec
ComParE 16 kHz 398 40.89 mins 6.16 sec 2.26 sec
Brooklyn 44.1 kHz 21 1.66 mins 4.7 sec 3.9 sec

Total (Healthy Cough) — 1498 1.69 hours 4.05 sec 1.85 sec

TABLE II:
DATASETS USED IN PRE-TRAINING. DNN CLASSIFIERS ARE PRE-TRAINED ON 7.84 HOURS OF AUDIO DATA WITH THREE CLASS LABELS: 

SNEEZE, SPEECH AND NOISE. THESE DATA DO NOT CONTAIN ANY COUGH.

Type Dataset Sampling rate No of events Total audio Average length Standard deviation

Sneeze
Google Audio Set & Freesound 16 kHz 1013 13.34 mins 0.79 sec 0.21 sec

Google Audio Set & Freesound + SMOTE 16 kHz 9750 2.14 hours 0.79 sec 0.23 sec
Total (Sneeze) — 10763 2.14 hours 0.79 sec 0.23 sec

Speech
Google Audio Set & Freesound 16 kHz 2326 22.48 mins 0.58 sec 0.14 sec

LibriSpeech 16 kHz 56 2.54 hours 2.72 mins 0.91 mins
Total (Speech) — 2382 2.91 hours 4.39 sec 0.42 sec

Noise
TASK dataset 44.1 kHz 12714 2.79 hours 0.79 sec 0.23 sec

Google Audio Set & Freesound 16 kHz 1027 11.13 mins 0.65 sec 0.26 sec
Total (Noise) — 13741 2.79 hours 0.79 sec 0.23 sec

frames always represents the entire audio event. This way
an image-like fixed input dimension feature matrix can be
computed where the general overall temporal structure of
the sound are also maintained. Such fixed two-dimensional
features have been successfully used to train DNN classifiers
in our previous experiments [11], [32].

The dimension of the input feature matrix has been
(3M+ 2, S) for M MFCCs. The frame length (F), exact
number of frames (S) and number of lower order MFCCs (M)
are used as the feature extraction hyperparameters, mentioned
in Table III. The table shows that M lies between 13 and 65,
which varies the spectral information in each audio event and
each audio event is divided into between 70 and 200 frames,
as different phases of coughs carry different information. Each
frame consists of between 512 and 4096 samples, i.e. 32 msec
and 256 msec of audio, as the sampling rate is 16 kHz in our
experiments.

IV. CLASSIFICATION PROCESS

A. Classifier Architectures

We have used only three DNN classifiers: CNN [41], LSTM
[42] and Resnet50 [43] in this study. We have refrained from
experimenting with any shallow classifier as using deep archi-
tectures along with SMOTE data balancing technique yielded
better results in our previous experiments [11], [32]. For our
initial set of experiments, we have used these three DNN
classifiers for two-class (TB vs COVID-19) and three-class

TABLE III:
FEATURE EXTRACTION HYPERPARAMETERS. BY VARYING THE 
MFCCS BETWEEN 13 & 65, FRAME LENGTHS BETWEEN 512 & 4096 

AND NO OF FRAMES BETWEEN 70 & 200, THE SPECTRAL 
RESOLUTIONS OF THE AUDIO HAVE BEEN VARIED OVER A LARGE 

RANGE.
Hyperparameters Description Range

MFCCs (M) lower order MFCCs to keep 13× k, where
k = 1, 2, 3, 4, 5

Frame length (F) into which audio is segmented 2k , where
k = 9, 10, 11, 12

Segments (S) no. of frames extracted from audio 10× k, where
k = 7, 10, 12, 15

(TB vs COVID-19 and healthy) classification and the classifier
hyperparameters are mentioned in Table IV. The classifier
training process is stopped when the performance wasn’t im-
proved after 10 epochs. Finally, for the improved performance,
we have applied the transfer learning.

B. Transfer Learning Architectures

The application of transfer learning has improved the classi-
fication performance in our previous studies [11], [13]. Hence,
we have also applied transfer learning in this study to improve
the classification performance, where the DNN classifiers are
pre-trained on the dataset, explained in Section II-B, and then
fine-tuned on the classification datasets, explained in Section
II-A. The feature extraction hyperparameters are adopted from
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TABLE IV:
CLASSIFIER HYPERPARAMETERS, OPTIMISED USING LEAVE-p-

OUT NESTED CROSS-VALIDATION SCHEME.

Hyperparameters Classifier Range
No. of conv filters (α1) CNN 3× 2k where k = 3, 4, 5
Kernel size (α2) CNN 2 and 3
Dropout rate (α3) CNN, LSTM 0.1 to 0.5 in steps of 0.2
Dense layer units (α4) CNN, LSTM 2k where k = 4, 5

LSTM units (α5) LSTM 2k where k = 6, 7, 8

Learning rate (α6) LSTM 10k where, k = −2,−3,−4

Batch Size (α7) CNN, LSTM 2k where k = 6, 7, 8

our previous studies [11], [13] and the hyperparameters of the
CNN and LSTM were determined during the cross-validation
process. These hyperparameters are mentioned in Table V.
A standard Resnet50, as explained in Table 1 of [43], with
512-unit dense layer has been used for the transfer learning.
The transfer learning process for a CNN is explained in Fig.
4.

TABLE V:
FEATURE EXTRACTION AND CLASSIFIER HYPERPARAMETERS OF 

THE PRE-TRAINED NETWORKS: WE USED THE SAME FEATURE 
EXTRACTION HYPERPARAMETERS USED IN OUR PREVIOUS WORK 

[11], [13], WHILE CLASSIFIER HYPERPARAMETERS WERE OPTIMISED 
ON THE PRE-TRAINING DATA (TABLE II) USING THE NESTED CROSS-

VALIDATION.

FEATURE EXTRACTION HYPERPARAMETERS
Hyperparameters Values

M MFCCs 39
F frame length 210 = 1024
S no. of frames 150

CLASSIFIER HYPERPARAMETERS
Hyperparameters Classifier Values

No. of conv filters (α1) CNN 256 & 128 & 64
Kernel size (α2) CNN 2

Dropout rate ((α3)) CNN, LSTM 0.3
Dense layer units (α4) CNN, LSTM, Resnet50 512 & 128 & 3(for pre-training)
Dense layer units (α4) CNN, LSTM, Resnet50 16 & 2 or 3(for fine-tuning)

LSTM units (α5) LSTM 512 & 256 & 128
Learning rate (α6) LSTM 10−3 = 0.001

Batch Size (α7) CNN, LSTM, Resnet50 27 = 128

C. Hyperparameter optimisation

The feature extraction process and classifiers have a number
of hyperparameters, listed in Table III and IV. They were
optimised by using a leave-p-out cross-validation scheme [44].
The train and test split ratio was 4:1, due to its effectiveness in
medical applications [45]. This 5-fold cross-validation process
ensured the best use of our dataset by using all subjects in both
training and testing the classifiers and implementing a strict
no patient-overlap between cross-validation folds.

D. Classifier evaluation

The F1-score has been the optimisation criteria in the
cross-validation folds and the performance-indicator of the

classifiers [46]. We note the mean per-frame probability that a
cough is from a COVID-19 positive subject is Ĉ in Equation
1.

Ĉ =

S∑
i=1

P (Y = 1|Xi, θ)

S
(1)

where P (Y = 1|Xi, θ) is the output of the classifier for feature
vector Xi and parameters θ for the ith frame.

The average F1-score along with its standard deviation
(σF1) over the outer folds during cross-validation are shown
in Tables VI, VII. Hyperparameters producing the highest
F1-score over the inner loops of the cross-validation scheme
have been noted as the ‘best classifier hyperparameters’ in
Tables VI, VII.

V. RESULTS

A. TB and COVID-19 cough classification

For the initial classification task in Table VI, the Resnet50
architecture has performed the best by producing the highest
mean F1-score of 0.9042 and mean AUC of 0.9190 with the
σF1 of 0.83. Although the CNN and LSTM have produced
a lower F1-score and AUC, the σF1 has also been lower,
0.61 and 0.49 respectively, suggesting better generalisation and
robustness over the folds for less deep architectures. This also
indicates that the very deep architectures such as a Resnet50,
although able to perform better, are prone to over-fitting. The
best feature hyperparameters have been 26 MFCCs, 1024
sample-long frames and 150 frames per event such as a cough.

To prevent over-fitting, we have applied transfer learning
and noticed a slight improvement in the DNN classifiers’
performance. The F1-score and the AUC have increased to
0.9259 and 0.9245 and the σF1 has decreased to 0.03 from
the pre-trained Resnet50 classifier. A similar trend has also
been noticed for CNN and LSTM classifiers, where their
performance (F1-score and AUC) has also increased along
with a lower σF1.

Although the CNN outperformed the LSTM initially, LSTM
has outperformed the CNN after applying transfer learning.
The mean ROC curves for the initial and pre-trained Resnet50
are shown in Fig. 5. These two systems achieve 96% and
93% sensitivity respectively at 80% specificity. Thus they
exceed the community-based TB Triage test requirement of
90% sensitivity at 70% specificity set by WHO [47].

B. TB and COVID-19 and healthy cough classification

We observe a similar pattern in three-class classification as
well. Table VII shows that the highest F1-score of 0.8578 has
been achieved from the Resnet50 classifier with a σF1 of 0.67
from the best feature hyperparameters of 39 MFCCs, 1024
sample-long frames and 120 frames per cough. At the same
time, CNN and LSTM produce the F1-scores of 0.8220 and
0.8125 with σF1 of 0.41 and 0.49 respectively. Both these
F1-scores and σF1 scores are lower than those produced by
the Resnet50. As this is a three-class classification, we have
replaced AUC with accuracy in Table VII. Again, the signs
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Fig. 4. Transfer learning architecture for the CNN: Cross-validation on the pre-training data produced optimal results when three convolutional layers
(256, 128 & 64) with (2 × 2) kernels were used, followed by (2, 2) max-pooling. The outputs of these three convolutional layers were flattened and passed
through two fully connected layers (with a dropout rate of 0.3), each consisting 512, 128 relu units. The final fully connected layer consists of 3 softmax
units. To apply transfer learning, the final two layers were taken away and was replaced by two fully connected layers with 16 and 2 units for two-class (TB
and COVID-19) cough classification and with 16 and 3 units for three-class (TB, COVID-19 and healthy) cough classification.

TABLE VI
CLASSIFYING TB AND COVID-19 COUGHS: RESNET50 HAS PERFORMED THE BEST IN DISCRIMINATING TB COUGHS FROM COVID-19 COUGHS. THE
INITIAL EXPERIMENT ACHIEVED THE F1-SCORE OF 0.9042 AND THE AUC OF 0.9190, ALONG WITH THE σF1 OF 0.83. AFTER APPLYING THE TRANSFER

LEARNING, F1-SCORE AND AUC INCREASE TO 0.9259 AND 0.9245 AND σF1 DECREASES TO 0.03.

Classifier Best Feature Best Classifier Hyperparameters Performance
Hyperparameters (Optimised inside nested cross-validation) F1-score σF1 AUC

Resnet50 M = 26,F = 1024, S = 150 Default Resnet50 (Table 1 in [43]) 0.9042 83×10−2 0.9190
CNN M = 26,F = 2048, S = 100 α1=256, α2=2, α3=0.3, α4=32, α7=256 0.8887 61×10−2 0.8895

LSTM M = 39,F = 2048, S = 120 α3=0.1, α4=32, α5=128, α6=0.001, α7=256 0.8802 49×10−2 0.8884
Resnet50 + Transfer Learning Table V Default Resnet50 (Table 1 in [43]) 0.9259 3×10−2 0.9245

LSTM + Transfer Learning ” Table V 0.9134 4×10−2 0.9124
CNN + Transfer Learning ” ” 0.9127 4×10−2 0.9211

 

 

 

96% 

93% 

Fig. 5. The ROC curves for discriminating TB coughs from COVID-19
coughs: An AUC of 0.9190 is achieved from the Resnet50 and the highest
AUC of 0.9245 is achieved after applying transfer learning to this Resnet50
architecture. Both systems achieve 96% and 93% sensitivity respectively at
80% specificity, thus exceed the community-based TB Triage test requirement
of 90% sensitivity at 70% specificity set by WHO.

of overfitting are clear in these performances and we apply
transfer learning next.

Application of the transfer learning has improved the clas-
sification performance by a small margin. The F1-score from
the Resnet50 rose to 0.8631 and the σF1 decreased to 0.11.
The performances from CNN and LSTM have also improved,
as the F1-scores of 0.8455 and 0.8427 have been achieved
from these two DNN classifiers, respectively. Their σF1 scores
are also much lower: 0.07 and 0.09 respectively. Although,
pre-trained CNN and LSTM models have produced lower
F1-scores, their σF1 is also lower, unlike in the previous
two-class classification. This shows that the application of
transfer learning helps the classifiers to be more robust in
classification tasks.

VI. DISCUSSION

Although many previous studies have shown that both TB
and COVID-19 can be discriminated from healthy coughs, here
we show that there are unique disease signatures present in
cough audio which is responsible for the machine learning
classifiers to discriminate TB coughs from COVID-19 coughs.
We have experimentally found that when the cough data are
limited, classifier performance can be poor and they are also
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TABLE VII
CLASSIFYING TB AND COVID-19 AND HEALTHY COUGHS: RESNET50 HAS AGAIN BEEN THE CLASSIFIER OF THE CHOICE BY PRODUCING THE

HIGHEST F1-SCORE OF 0.8578 WITH A σF1 OF 0.67. THIS PERFORMANCE HAS BEEN IMPROVED TO AN F1-SCORE OF 0.8631 WITH A LOWER σF1 OF
0.11 AFTER APPLYING THE TRANSFER LEARNING.

Classifier Best Feature Best Classifier Hyperparameters Performance
Hyperparameters (Optimised inside nested cross-validation) F1-score σF1 Accuracy

Resnet50 M = 39,F = 1024, S = 120 Default Resnet50 (Table 1 in [43]) 0.8578 67×10−2 0.8662
CNN M = 26,F = 1024, S = 150 α1=256, α2=2, α3=0.3, α4=16, α7=128 0.8220 41×10−2 0.8311

LSTM M = 26,F = 2048, S = 120 α3=0.1, α4=32, α5=128, α6=0.001, α7=256 0.8125 49×10−2 0.8181
Resnet50 + Transfer Learning Table V Default Resnet50 (Table 1 in [43]) 0.8631 11×10−2 0.8689

CNN + Transfer Learning ” Table V 0.8455 7×10−2 0.8564
LSTM + Transfer Learning ” ” 0.8427 9×10−2 0.8490

prone to overfitting. Very deep architectures generally produce
higher mean F1-scores, however with the expense of higher
variances along the cross-validation folds. Our study shows
that the application of transfer learning using vocal data which
do not even include cough can be used to improve classifiers’
performance in disease classification.

TB and COVID-19 are the two most deadly respiratory
diseases transmitted via droplets that are coughed out. Thus, a
contact-less diagnosis using a smartphone would be the most
desirable solution in these conditions, as opposed to other
common coughs from allergic asthma, chronic obstructive pul-
monary disease (COPD), bronchitis, common colds, etc, that
are not contagious. The deep learning classifiers presented in
this study can be implemented in a smartphone, thus enabling
the diagnosis process fully non-contact and without needing
any expensive laboratory testing equipment, thus protecting the
environment and the health care professionals from possible
exposure to health risks.

VII. CONCLUSION AND FUTURE WORK

Here in this study, a deep learning based cough classifier
which can discriminate between TB coughs and COVID-19
coughs and healthy coughs has been presented, where a
subjective test confirmed that respiratory disease can’t be con-
firmed just by listening to the cough audio. The cough audio
recordings contain various types and levels of background
noise as they were collected inside a TB research centre,
recording booth and by using smartphones from subjects
around the globe. This cough data include 47 TB subjects, 229
COVID-19 subjects and 1498 healthy subjects contributing
1.68 hours, 18.54 minutes and 1.69 hours of audio respectively.
Application of transfer learning has yielded better performance
in our previous studies, thus a separate data containing 2.14
hours of sneeze, 2.91 hours of speech and 2.79 hours of noise
such as door slamming, engine running, etc, have been used
to pre-train three deep neural networks: CNN, LSTM and
Resnet50. The class-imbalance in our dataset was addressed
by using SMOTE data balancing technique during the training
process and using performance metrics such as F1-score and
AUC. The classifiers were evaluated by using a 5-fold nested
cross-validation scheme. The experimental results show that
the highest F1-score of 0.9259 has been achieved from a
pre-trained Resnet50 for the two-class (TB vs COVID-19)

cough classification task and the highest F1-score of 0.8631
has been achieved from a pre-trained Resnet50 for three-class
(TB vs COVID-19 vs healthy) cough classification task. The
pre-trained Resnet50 architecture also produces the highest
AUC of 0.9245 with 96% sensitivity at 80% specificity, which
exceeds the TB triage test requirement of 90% at 70% speci-
ficity. The results also show that the application of transfer
learning has improved the performance and generalises better
over the cross-validation folds, making the classifiers more
robust. The best feature hyperparameters also contain higher
order of MFCCs, suggesting auditory patterns responsible
for disease classification are not perceivable by the human
auditory system. This type of cough audio classification is
non-contact, cost-effective and can easily be deployed to a
smartphone, thus it can be a useful tool for an automatic
non-invasive TB and COVID-19 screening, especially in a
developing country setting, where these two most deadly
contagious diseases claim thousands of lives each year.

As for the future work, we are investigating the length of
the coughs required for effective overall classification scores.
We are also compiling a bigger dataset containing both TB
and COVID-19 patients to improve the existing cough classi-
fication models and deploying the TensorFlow-based models
on an Android and iOS platform.
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