
An Ad-Hoc Sensor Network for Vineyard
Monitoring

Nicholas Nell∗1,Nathalie Mitton†2,Thomas Niesler∗3,Riaan Wolhuter∗4

∗Department of Electronic Engineering, Stellenbosch University
†INRIA, Lille, France

120165374@sun.ac.za 3trn@sun.ac.za 4wolhuter@sun.ac.za 2nathalie.mitton@inria.fr

Abstract—This paper explores the use of an ad-hoc wireless
sensor network in a vineyard-based environment to increase the
effective range of sensor nodes without the use of high power
communication techniques. Physical sensor and gateway nodes
were developed in order to test the use of an adapted AODV
routing protocol in a wireless sensor network. The network was
deployed to a vineyard environment where the effectiveness of
the strategy was evaluated based on the ability of the network
to self-configure. First tests indicate that the protocol performs
sufficiently well to be used in vineyard environments for data
collection. We conclude that an ad-hoc sensor network is a
feasible approach to low-power sensing over wide areas, as
required for precision viticulture.

Index Terms—Ad-hoc Networking, Wireless Sensor Networks,
Short-Range Communication, Low-Power Operation, Vineyard
Monitoring, Precision Agriculture

I. INTRODUCTION

The collection and analysis of vineyard telemetry data
can significantly contribute to viticultural efficiency and pro-
ductivity. Such telemetry data can, for example, be used to
increase the quality and amount of grapes produced in a
vineyard, while at the same time minimising the risk of waste-
ful operations. This can contribute to increased efficiency by
reducing the cost of production and increasing environmental
sustainability [1]. Thus, an improvement in the effectiveness
and ease of collecting such telemetry data will have a direct
impact on the efficiency of the vineyard and allow methods
of precision agriculture to be implemented.

Precision agriculture refers to the use of technology to
make farming as efficient as possible by means of exact mea-
surement. Generally, this is achieved by breaking farmland
into smaller manageable sections, and then obtaining precise
and continuous measurement data for each section. This
allows for the determination of, for example, the variability
in inter and intra-field condition of the plants and soil. If
the exact conditions of every square meter of soil and every
plant were known, the farmer could locally apply precisely the
right quantity of water or fertiliser, thereby reducing waste and
improving the quality of the produce. By using technology to
virtually divide large areas of land into much smaller sections,
the farmer is given far greater control over the crop. In the
long term, this technology will also allow the collection and
subsequent analysis of large sets of data, revealing trends that
can be exploited for even more efficient farming and improved
decision making [2].

Since these advances depend on the collection of telemetry
data from the vineyards, a means must be developed to allow
such data collection to be set up quickly, easily, at manageable
cost and with reliable results. Currently, farmers must operate
either without such data collection methods (especially in the
case of small scale farms) or must use very labour-intensive
approaches, such as on-site manual measurement and data
collection. Where farmers have tried to deploy more advanced
data collection methods, they have frequently been frustrated
by the failure of traditional communication techniques. This
could, for example, be due to a lack of cellular signal for
GSM enabled nodes or power usage demands which cannot
be met due to a lack of grid-tied power, especially when using
high power communication techniques such as satellite or
GSM. Other difficulties arise in vineyards which are situated
in mountainous or hilly landscapes, where direct line-of-sight
between sensor nodes in a network is difficult.

On-the-go data collection is employed in situations where
wireless sensor networks are not easily implemented. A rel-
atively inexpensive data collection technique, on-the-go data
collection is based on a sensor attached to pre-existing mobile
farming equipment, and where the data is collected while the
equipment is in use. Examples include sensors attached to
tractors or irrigation systems [3]. A limitation associated with
on-the-go sensors is that the equipment it is attached to has
to be in use for data to be collected and that the data usually
has to be manually retrieved by the farmer.

Many of these limitations can be overcome by using ad-
hoc wireless sensor networks that use low power, short-
range communication techniques in conjunction with in-situ
environmental, soil and plant sensors. Ad-hoc networks are
especially useful because it is not necessary to configure each
sensor node individually. Low-power designs allow the nodes
to be battery-powered, and can thus be placed anywhere in
a vineyard. The use of short-range communication requires
sensor nodes to communicate with their nearest neighbours,
and automatically discover routes to a gateway node without
manual intervention. This approach offers a practically fea-
sible means of setting up a data collection system that can
provide autonomously gathered real-time data to the farmer.

This paper will explore the design and implementation
of such a low-power ad-hoc vineyard based wireless sensor
network. A description of the network setup will be followed
by the hardware design and implementation of the sensors.
This is followed by a description of the network protocol used.

Finally, the results of the first practical test will be presented.

II. HARDWARE IMPLEMENTATION

Our sensor nodes consist of an MSP432p401r micropro-
cessor (MCU) attached to several sensors and peripherals [4].
The use of an ultra-low-power processor allows the nodes to
be battery-powered for extended periods.

Peripherals include a low-power RFM95W LoRa radio
module, operating in the 868MHz frequency band [5]. This
radio module is responsible for all inter-node communication.

Every node also includes a low-power Adafruit PA101D
GPS module [6]. This module supports multiple positioning
systems, including GPS, GLONASS, GALILEO and QZSS.
Besides providing each node with positional data, the most
important function of the GPS module is to provide a stable,
shared time base to all nodes. The accurate pulse-per-second
signal, which commences when a positional lock is estab-
lished, allows the MCU to synchronise its onboard real-time
clock (RTC). This is critical to the operation of the network,
as will be discussed in Section V.

To enable data transfer to cloud storage from the sensor
network, the root node includes a GSM module based on
the GL865-Quad [7]. The GSM module allows the gateway
sensor node to periodically establish an HTTP connection to
a web server and upload all received telemetry data.

Each node also includes a low-power BME280 temper-
ature, pressure and humidity sensor. This integrated device
simplifies the hardware design by avoiding the need for
multiple separate sensors. For light intensity measurement,
the MAX44009 light sensor is included, and to measure the
volumetric water content of the soil, the EC-5 soil probe is
used.

Lithium polymer (LiPo) batteries provide power to the
nodes. This type of battery offers a high energy density and
reliability. To regulate the voltage provided by the battery, a
DC-DC regulator circuit was designed around the TPS63001
buck-boost converter [8].

All components were housed in an IP65 rated ABS enclo-
sure to provide environmental protection and allow continuous
operation in a vineyard, shown in Figure 1.

In the current prototype, the data collected by the network
is uploaded to a web server running on a Raspberry Pi using
the REST API.

Fig. 1. Node hardware in enclosure.

III. NETWORK SETUP

Our sensor network consists of a mixture of edge nodes
(nodes containing telemetry sensors) and gateway nodes
(nodes that receive telemetry data from edge nodes). Edge
nodes and gateway nodes have identical hardware, with the
exception of the inclusion of the GSM module on the gateway
nodes. The advantage of using the same underlying architec-
ture for both node types is that it simplifies the maintenance
of the hardware and makes it easy to increase the number of
gateway nodes by simply adding a GSM module to an edge
node.

Edge nodes primarily operate in a sleep state to conserve
power. They are programmed to wake up periodically to
collect telemetry data and to initiate a data transfer to a
gateway node. Edge nodes also act as routing nodes when the
need arises, for instance when there is no direct connection
between an edge node and a gateway node. The network
protocol will be discussed in greater detail in Section V.

In the current prototype, only a single gateway node is
used. However, the network allows for the addition of multiple
gateway nodes with no modification to the MAC or network
layer protocols.

IV. MAC LAYER IMPLEMENTATION

A. S-MAC

The MAC layer protocol used by our network is an adapta-
tion of the S-MAC protocol. S-MAC is specifically designed
to reduce the power consumption of a wireless sensor net-
work. It has been shown to perform well in situations where
nodes have single tasks, are deployed in an ad-hoc fashion and
where nodes spend most of their time in an inactive or sleep
state [9]. The implemented protocol uses the GPS pulse-per-
second signal to synchronise all network node in time. The
nodes can then use time slots to synchronise communication.
The use of time slots reduces the chance of message collisions
on a shared communication medium. However, the main
reason for the use of a time-slotted approach is to reduce node
energy consumption. Careful synchronisation allows nodes to

TABLE I
DATAGRAM FORMAT

Data Header Data Network Statistics Total
Size (Bytes) 10 46 17 73

TABLE II
DATAGRAM HEADER FORMAT

Next
Hop

Local
Source

Network
Source

Network
Destination

Hop
Count

Tx
Slot

Current
Slot

Message
Type

Bytes 1 1 1 1 1 2 2 1

bring the onboard radio module out of its sleep state only
within a specified time slot.

The implemented MAC protocol borrows a few key tech-
niques from the S-MAC protocol. Neighbouring nodes share
their transmission time slots, eliminating the need for nodes to
listen to the shared communication channel in every time slot.
Thus nodes can remain in a sleep state while not in their own,
or a neighbouring node’s, data transmission time slot. Another
borrowed feature is that nodes will place their radio modules
in a sleep state when overhearing a data message for which
they are not the intended recipient. This happens when a
node listens to the shared communication channel, expecting a
message, but overhears a message with a different destination.
It can then conserve power by entering a sleep state for the
rest of the transaction. Synchronised global transmission time
slots are used to allow the nodes of the network to perform
the initial routing setup when there are no known routes or
neighbours.

B. Datagram Structure

Messages sent using the MAC protocol consist of a header,
followed by a data section and ended with a network statistics
section as seen in Table I. The message header contains
information about the route the packet is on, how many hops
it has gone through, information about the sending node’s
transmission slot and current slot as well as a message type
flag. The message type flag indicates to the receiving node
how to interpret the data contained in the data section of the
message. Finally, the network statistics section of the message
is used only to analyse the performance of the network and
is not necessary for network operation.

The message header structure is illustrated in Table II. The
Next Hop byte contains the ID of the next node along the route
to the destination node, whose ID is contained in the Network
Destination byte. The Local Source byte contains the ID of
the node from which the message was most recently passed,
while the Network Source byte contains the ID of the node
from which the message originated. The two source ID’s will
be the same at the start of the lifecycle of a message, when it
is generated. The Tx Slot contains two bytes that indicate the
transmission slot number of the local source node, while the
Current Slot contains two bytes which indicate to the receiving
node in which slot the message was sent by the local source
node. This information is used to ensure that the network
remains synchronised.

The data section of the message can be interpreted in one
of three ways, depending on the value of the Message Type
byte in the message header. First, it can be interpreted as
telemetry data, thus containing all the sensor data dispatched
by the source node. Second, the data can be interpreted as a
route request and thirdly a route reply. The route reply and
route request messages will be further discussed in Section V.

V. NETWORK PROTOCOL

A. AODV

AODV (Ad-hoc On-Demand Distance Vector Routing) was
used to achieve routing within our network [10]. The advan-
tages of AODV include loop-free route discovery, quick repair
of broken links, and avoiding the need for individual nodes to
store information about the entire network. AODV makes use
of route request (RREQ) and route reply (RREP) messages
to establish paths within the network. A node wanting to find
a route to another node (in this implementation a gateway
node), will broadcast an RREQ packet to all its neighbouring
nodes, (A neighbouring node is classified as any node that can
receive a radio message from the specified node). The nodes
that receive the RREQ will check to see whether they have a
valid and up-to-date route to the destination node. If they do,
they unicast an RREP packet back to the source node. If they
do not, they rebroadcast the RREQ to all of their neighbours,
and store reverse-path information indicating the way to the
source node if an RREP packet is later received. Once the
RREQ packet reaches its destination, or reaches a node that
knows a valid route to the destination, an RREP packet is
unicast back to the source node along the reverse path stored
by each of the intermediate nodes along which the RREQ
had travelled. Each of these nodes in turn set up forward path
information to the destination node. Each node along the path
from the source node to the destination node will now have
a route to the destination node.

B. AODV Modifications

Some simplification to the AODV protocol is possible
based on the needs of the overall system. Gateway nodes
will never have to initiate a route discovery, and will only
receive data from edge nodes. Edge nodes only need to
store routes to gateway nodes, and not to other edge nodes,
as an edge node will never be the final destination of a
data message. Nodes must however store information about
all of their neighbours, including their TX slots and their
ID. This is because a node will not know whether it is an
intermediate node along a route from another edge node to a
gateway node until it receives a data message that needs to
be forwarded along the route. When an edge node initiates
a data transfer to a gateway node, it will look up the route
to the gateway node in its routing table, and then send the
message in the appropriate transmission slot. The source
node will wait for an acknowledgement message from the
node on the next hop along the route, and will then assume
the message has successfully been sent. This eliminates the
need for acknowledgement messages to be routed back from
the destination gateway node. If an acknowledgement is not

received from the next-hop node, the transaction will be re-
attempted in the next available global transmission slot. This
is repeated until either an acknowledgement is received or
the maximum number of permitted retries per message has
been reached. Once this maximum is reached, a dead route
is assumed and deleted from the sending nodes routing table.
Then, a new route discovery sequence is initiated.

Each route recorded by an edge node has an associated
expiration timer. The route will have to be checked by the
edge node when the timer expires to ensure that the route is
still active. The use of an expiration timer on a route allows
the quick discovery of broken routes. The edge node updates
its routing information by sending out a new RREQ with
which to discover a new route to the gateway node.

VI. EXPERIMENTAL SETUP

For initial testing, several statistics regarding the perfor-
mance of the sensor network were collected. These include the
number of times a node had to initiate a route discovery, the
message overhead that is required for successful data transfer
from an edge node to a gateway node, and the time it takes
a node to discover a route to a gateway node.

In our experiments the nodes are configured to collect
and transmit sensor data once every twenty minutes, as the
environmental data does not change rapidly. The gateway
node will thus attempt to upload the data collected by all
nodes at the start of the twenty-minute window. This is to
reduce the risk of a node sending a data message during the
GSM upload. If the GSM upload fails, the gateway will store
the data messages that have not been uploaded, and retry the
upload halfway through the twenty-minute window. Each of
the GSM upload slots is limited to a maximum of one minute,
to reduce the chance of messages arriving during the upload.
When the gateway is in the process of uploading GSM data, it
is unable to receive any messages over the radio channel due
to the processor not being able to service both modules at the
same time. This can be overcome in future by implementing
a dedicated co-processor for the GSM communication.

A total of five nodes were installed in a hillside vineyard
in Stellenbosch, South Africa. They were arranged in a star
configuration so that each node can see the gateway node. The
node placement is shown in Figure 2. This was done to test the
loop-free nature of the routing protocol, as it is still possible
for neighbouring nodes to respond to RREQ messages even
if the node doing the route request has direct contact with the
gateway node.

The gateway node was installed and activated first, after
which the remaining nodes were enabled one by one. After a
node is powered on, it waits for a GPS lock to synchronise
the onboard RTC. Once the RTC is initialised, nodes will start
the route discovery process. In each global transmission slot
(global transmission slots are open every 10 seconds), each
node is given a 20% chance to send an RREQ, if no routes to
the gateway node are known, otherwise, if at least one route to
the gateway is known, the edge nodes will listen in the global
transmission slot. This is to reduce congestion at the start of

Fig. 2. Node placement in the vineyard.

the network’s life, or when multiple nodes are activated and
start the route discovery process at the same time.

After the nodes were installed this way, they were left for
48 hours to both record vineyard telemetry and to monitor
the stability of the network by means of the data that was
uploaded to the webserver.

VII. EXPERIMENTAL RESULTS

A. Initial Observations

As expected, it was found that the nodes that were activated
directly after the gateway node found routes to the gateway
node quickly and with a small number of RREQ messages.
For example, The first node to be activated after the gateway
(Node AB) found a route in 21 seconds with only 1 RREQ
message. The second node (node DE) to be activated found a
route to the gateway node after 31 seconds, also using a single
RREQ. The remaining two nodes experienced the situation
described below.

In situations where two edge nodes can both see the
gateway, but one has a much stronger link to the gateway
than the other, a direct route to the gateway is not always
found. For example, for nodes AB and BC in Figure 2, AB
sends an RREQ that is serviced with an RREP by both the
gateway node and BC. Due to the capture effect present in
LoRa demodulation, the source node AB would often only
hear the stronger RREP from BC. This would cause AB to
set up a route to the gateway node through node BC. This
situation causes unnecessary traffic on the network, since a
direct route to the gateway is in fact possible. To address
this, a priority system was introduced, where all nodes other
than gateway nodes would perform a brief carrier sense on
the channel before sending an RREP. This allows the gateway
node to always send an RREP first if it is in range.

Another addition that improved the route discovery rate of
the network, is the introduction of periodic HELLO messages

sent out by the gateway node. When an edge node receives
a HELLO message and does not yet know a route to the
gateway, it can add a route to its routing table. The edge
node that received the HELLO message then does not have
to initiate a route discovery. It also further prevented the
situation described above, because when a node hears a
HELLO message from the root, it can replace any other route
to the gateway node with a direct link, if the node had stored
a previously inefficient route.

Another situation that led to incorrect or inefficient routing
data, was the hidden node problem. In this situation, two
nodes hear an RREQ and both respond to it with an RREP.
However, the two nodes are not able to hear each other. This
can cause the source node to receive incorrect routing data.

B. Network Results

After the changes mentioned above, all nodes were reset.
The network performed noticeably better, with all edge nodes
now finding the most direct route to the gateway node. A
summary of the initial route discovery statistics is shown in
Table III. Each edge node required only a single RREQ to
discover a route to the gateway node, except for node BC.
This node heard a HELLO message before it began route
discovery and therefore did not have to perform this sequence.
The gateway node sent out three RREQ messages, further
confirming that it received each of the RREQ messages.

After the initial discovery, the edge nodes sent telemetry
data to the gateway node once in every twenty-minute time
window. The expiration time on routes was set to sixty
minutes and did not reset even when a data message was
successfully sent. This was done to test the situation where a
node has to rediscover a route to the gateway node. This was
found to occur successfully.

After 10 hours of operation, during which edge nodes
performed route discovery every hour, the edge nodes had sent
131 data messages to the gateway, and 148 messages in total.
This demonstrates that even with the artificially high incidence
of broken links precipitated by not resetting the expiration
timers the network protocol overhead was only 12.9%. The
148 messages were sent within a single one second time slot
each, with 3540 global transmission slots available in the same
10 hour period. It is clear that with only 4 edge nodes and
one gateway node, the network is far from capacity.

C. GSM Upload

During the testing period, we observed that it took the
gateway node required up to 46 seconds to upload the five
stored messages to the webserver. This delay occurs because
the GSM module has to perform one push request to the
web server for each message, and response time from the
webserver is dependent on multiple uncontrollable factors.
Thus, the blocking nature of the GSM uploads is a key
limitation in the number of edge nodes a gateway node can
accommodate in the current implementation.

TABLE III
STATISTIC GATHERED DURING NETWORK INITIAL ROUTE DISCOVERY

ID AB BC CD DE
RSSI -91 -79 -81 -65
RREQ
To Route 1 0 1 1

Time To
Route 21 42 82 32

VIII. CONCLUSION AND IMPROVEMENTS

We have presented the design of an ad-hoc sensor network
intended for real-time viticultural monitoring that uses an
adapted AODV routing protocol to allow easy installation
without prior configuration. Once placed in the vineyard and
enabled, nodes independently discover routes to the gateway
node quickly and without excessive routing overhead. The
telemetry data that was gathered by each node was success-
fully sent to the gateway node and uploaded to a web server,
where it could be viewed on a dashboard [11].

The upload of data using the GSM module could be
improved by better scheduling to avoid the transmission slots
of neighbouring nodes, or by offloading the task to a dedicated
co-processor to avoid blocking any inter-node data traffic.

The network can be improved by adding additional priority
levels to nodes during the route discovery process, where
nodes that are closer to the gateway node (and therefore have
routes with fewer hops), have a higher priority in sending
RREP messages back along a path to a source node that
initiated an RREQ. Nodes with a higher priority would then
have to perform carrier sensing on the channel for a shorter
duration of time compared to nodes with lower priority levels,
allowing them to transmit RREP messages sooner.

ACKNOWLEDGEMENT

We thank Albert Strever and Talitha Venter for arranging
access to the test vineyard. This research was supported by
the Wine Industry Network of Expertise and Technology
(Winetech). We thank Telkom South Africa for additional
support.

REFERENCES

[1] A. Modawal, The Softweb Solutions Website, [Online]. Available:
https://www.softwebsolutions.com/resources/vineyard-management-
system.html.

[2] S. Marios and J. Georgiou, “Precision agriculture: Challenges in sensors
and electronics for real-time soil and plant monitoring,” in Proc. IEEE
Biomedical Circuits and Systems Conference (BioCAS), 2017, pp. 1–4.

[3] V. Adamchuk, J. Hummel, M. Morgan, and S. Upadhyaya, “On-the-go
soil sensors for precision agriculture,” Computers and Electronics in
Agriculture, vol. 44, no. 1, pp. 71–91, 2004.

[4] “MSP432p401r Product Page,” Texas Instruments, [Online]. Available:
https://www.ti.com/tool/MSP-EXP432P401R.

[5] “RFM95W Datasheet,” HopeRF, [Online]. Available:
https://www.hoperf.com/modules/lora/RFM95.html.

[6] “Adafruit Mini GPS Module,” Adafruit, [Online]. Available:
https://www.adafruit.com/product/4415.

[7] “GSM-Click Product Page,” MikroElektronika, [Online]. Available:
https://www.mikroe.com/gsm-click.

[8] “TPS63001 Datasheet,” Texas Intruments, [Online]. Available:
https://www.ti.com/product/TPS63001.

[9] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol
for wireless sensor networks,” in Proc.Twenty-First Annual Joint Con-
ference of the IEEE Computer and Communications Societies, vol. 3,
2002, pp. 1567–1576 vol.3.

[10] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing,”
in Proc. Second IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), 1999, pp. 90–100.

[11] “ThingsBoard — Dashboard.” [Online]. Available: http://meesters.
ddns.net:8008/dashboard/a30f57f0-7d8b-11eb-9466-61843e0f4458?
publicId=d7ab0d20-c43e-11eb-b1dd-0d4d650070a1

Nicholas Nell is currently a postgraduate research student at Stellenbosch
University. He completed his undergraduate engineering degree at Stellen-
bosch University in 2019 and is currently studying the design of ad-hoc sensor
networks for viticultural monitoring. His research interests include routing
protocols, wireless sensor networks, and embedded software development.

http://meesters.ddns.net:8008/dashboard/a30f57f0-7d8b-11eb-9466-61843e0f4458?publicId=d7ab0d20-c43e-11eb-b1dd-0d4d650070a1
http://meesters.ddns.net:8008/dashboard/a30f57f0-7d8b-11eb-9466-61843e0f4458?publicId=d7ab0d20-c43e-11eb-b1dd-0d4d650070a1
http://meesters.ddns.net:8008/dashboard/a30f57f0-7d8b-11eb-9466-61843e0f4458?publicId=d7ab0d20-c43e-11eb-b1dd-0d4d650070a1

	Introduction
	Hardware Implementation
	Network Setup
	MAC layer implementation
	S-MAC
	Datagram Structure

	Network Protocol
	AODV
	AODV Modifications

	Experimental Setup
	Experimental Results
	Initial Observations
	Network Results
	GSM Upload

	Conclusion and Improvements
	References
	Biographies
	Nicholas Nell

