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Abstract— Automatic cough detection is key to tracking the
condition of patients suffering from tuberculosis. We evaluate
various acoustic features for performing cough detection using
deep architectures. As most previous studies have adopted
features designed for speech recognition, we assess the suit-
ability of these techniques as well as their respective extrac-
tion parameters. Short-time Fourier transform (STFT), mel-
frequency cepstral coefficients (MFCC) and mel-scaled filter
banks (MFB) were evaluated using deep neural networks,
convolutional neural networks and long-short term models.
We find experimentally that, by regarding each cough sound
as a single input feature instead of multiple shorter features,
better performance can be achieved. Longer analysis windows
also provide enhancement in contrast to the classic 25 ms
frame. Although MFCC performance is improved by sinusoidal
liftering, STFT and MFB lead to better results. Using MFB
and the optimum segment and frame lengths, an improvement
exceeding 7% in the area under the receiver operating charac-
teristic curve across all classifiers is achieved.

I. INTRODUCTION

Persistent coughing is a usual symptom of many respira-
tory diseases and has been widely used by physicians as a
parameter to guide medical evaluation and track progress of
treatment. For instance, the World Health Organization [1]
advises that individuals with cough episodes for two weeks
or more should be tested for Tuberculosis. Since coughing
information is generally provided by the patients, several
researches have attempted to develop automatic methods to
detect, classify and count cough sounds in order to devise
objective parameters for patient assessment.

A wide range of digital signal processing and machine
learning techniques has been applied to differentiate coughs
from other sounds. In terms of acoustic features, most of this
previous work has adopted techniques from automatic speech
recognition, especially mel-frequency cepstral coefficients
(MFCC) and their variations, partitioning the sounds into
segments and frames using the scheme illustrated in Fig.
1 [2]–[12]. MFCCs have also been combined with other
features, such as F0, formant frequencies, spectral flatness
and zero crossing rate, which some authors have found to
increase system performance [13]–[15].

In the field speech recognition, recent studies have shown
improved performance when the classic quefrency compo-
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Fig. 1. A typical partitioning scheme used to extract spectral
or cepstral features from a cough audio signal. In the top
panel, segments are taken from the signal. In the bottom
panel, a segment is divided into frames to compute multiple
FFTs. The features computed from all frames in a segment
constitute a single input vector for classification.

nents used to compute MFCCs are replaced by mel-scaled
filter banks (MFB), still using the partitioning scheme of Fig.
1 [16]–[18]. These authors highlight the spectro-temporal
locality as relevant information for sound classification,
especially when deep learning architectures are used. The
same approach has also been applied to environmental sound
classification [19], [20].

Other authors have reported improved cough detection
using related feature extraction strategies. Larson at al [21]
apply principal component analysis (PCA) to sound spectro-
grams, which has the benefit of preserving patient privacy.
Amoh and Odame [22] use the short-time Fourier transform
(STFT) as input vectors to convolutional neural networks
(CNN) and long-short term models (LSTM), assuming that
higher level features could be learnt automatically by these
deep architectures.

It has however not been conclusively established which
acoustic features are most effective for cough detection when
using deep models as classifiers. Therefore, this study aims to
assess the relative performance achieved by cough detectors
when using STFT, MFB and MFCCs as acoustic features and
deep neural networks (DNN), CNN and LSTM as classifiers.



Additionally, we will attempt to determine the best segment
and frame lengths for the partitioning schemes used by these
feature extraction techniques. The results presented in this
paper form part of a larger and ongoing project aimed at the
assessment of tuberculosis patients through automatic cough
monitoring.

II. METHODS

A. Data Acquisition

Our dataset was compiled from two publically available
sources. The first is the Audio Set provided by Google,
which consists of extracts from 1.8 million Youtube videos
that were manually labeled according to an ontology of 632
audio event categories [23]. The second is the Freesound
audio database, which is not explicitly transcribed but is
accompanied by titles and descriptions provided by the users
who uploaded them.

The Audio Set is a selection of 10-second video clips with
one or more labels indicating what the human annotators
could hear. As these labels were assigned to the entire
video, we performed a second annotation step to identify
where each sound event starts and ends. This process was
accomplished semi-automatically, by first using an energy
detector to determine the boundaries of possible sound events
and then labeling each individual event manually. This step
also served to confirm the correctness of the provided labels.
The same procedure was applied to the Freesound data.

Since we ultimately aim to deploy our cough detector in
hospital wards or in domestic environments, we included
sound classes other than coughing, specifically speech,
sneezing, domestic/home sounds and throat clearing. The
domestic/home category bundles together sounds labelled in
the Audio Set that relate to daily home activities, such as
door slams, collisions between objects, toilet flushing and
running engines. From the Freesound database, all audio files
that have the words ”cough”, ”sneeze” or ”throat” in their
titles or descriptions were considered for inclusion.

The final dataset consists of 7781 audio excerpts extracted
from 3132 files, corresponding to an average of 2.5 excerpts
per file. Since it is likely that different files were uploaded by
different users, a meaningful diversity has been achieved in
terms of sources, background noises, distortion, reverberation
and so forth, which is important for good generalization. The
dataset composition is shown in Table 1. Note that 1151 files
were used to collect coughs, which suggests a high number
of individuals for this particular category in our dataset.
In comparison, other studies considering coughing generally
contain recordings from fewer than 20 individuals [2], [11],
[21], [22].

B. Acoustic Features

We evaluate the cough detection performance of three
audio features: STFT, MFB and MFCC. These features were
chosen because they have been widely and successfully used
in speech recognition systems before and since the advent of
deep architectures. In particular, as the end-to-end approach
becomes more prominent, less-engineered features such as

TABLE I. Composition of the audio dataset.
Category Files Audio Excerpts
Cough 1151 3114
Speech 501 2326
Sneeze 778 1013
Throat Clearing 304 301
Domestic/Home Sounds 398 1027
Total 3132 7781

STFT and MFB have become a common choice. However,
MFCCs are still employed in many studies since they con-
tinue to provide reasonable performance in conjunction with
current machine learning models.

In our preliminary experiments, the following sinusoidal
liftering over the MFCCs, designed for noisy speech recogni-
tion [24], [25], showed an improvement in cough detection.

wi = 1 +
M

2
sin

(
πi

M

)
(1)

In Equation 1, wi, i = 1, 2, ...,M , are the lifter weights
applied to the M cepstral coefficients. Both raw MFCCs and
liftered-MFCCs (L-MFCCs) were included in our analysis.

All features mentioned above are extracted from audio seg-
ments that are further divided into a sequence of consecutive
overlapping frames, as depicted in Fig. 1. Features extracted
from all frames within each segment are regarded as a single
classifier input vector.

The choice of segment and frame durations in this par-
titioning scheme remains an open question for cough de-
tection. Two approaches were considered for experimental
evaluation: multiple short segments per sound event or a
single long segment. Frame lengths optimal for speech recog-
nition have been adopted in several studies, but the specific
characteristics of coughs may mean that different values
would be better suited. Both segment and frame durations
will be subject to the analysis presented in Section III.

C. Experimental Setup

Features were evaluated with DNN, CNN and LSTM
classifiers, using the area under the receiver operating char-
acteristic curve (AUC) as a performance measure. The ar-
chitectures of the classifiers were inspired by previous work
on small-footprint keyword spotting [26]–[28].

The DNN implementation consisted of three hidden layers
with 128 ReLu units per layer. The CNN had one convolu-
tional layer and two 128-unit hidden layers. Filter structures
of 5x5x32 and 2x2x1 were used for the convolutional and
the max-pooling layers, respectively, padding their inputs to
maintain the same dimensions. Two 832-unit layers were
adopted for the LSTM implementation. As preliminary re-
sults did not show improvement using multiclass classifiers, a
two-class softmax layer was chosen as output for all models.

Librosa and Keras with a Tensorflow backend were used to
extract features and train classifiers. Training was performed
using the Adam optimizer with categorical cross-entropy as a
loss function and early stopping. Three sets of experiments
were performed. In the first, a hyperparameter search was
used to find the segment and frame durations achieving the



TABLE II. Top five cross-validated results of grid search for each feature type and segment/frame length (ms) using DNNs.
STFT MFB MFCC L-MFCC

Seg. / Frame AUC Seg. / Frame AUC Seg. / Frame AUC Seg. / Frame AUC
640 / 32 0.943 640 / 32 0.955 640 / 128 0.917 640 / 128 0.935
640 / 24 0.942 640 / 128 0.953 800 / 128 0.915 800 / 128 0.933
800 / 32 0.939 800 / 128 0.953 480 / 128 0.915 640 / 32 0.932
640 / 128 0.939 800 / 32 0.952 960 / 128 0.913 640 / 64 0.932
800 / 128 0.939 640 / 24 0.952 640 / 64 0.913 640 / 24 0.931

TABLE III. Top five cross-validated results of grid search for each feature type and segment/frame length (ms) using CNNs.
STFT MFB MFCC L-MFCC

Seg. / Frame AUC Seg. / Frame AUC Seg. / Frame AUC Seg. / Frame AUC
640 / 24 0.959 800 / 64 0.973 640 / 64 0.933 640 / 64 0.955
640 / 64 0.958 640 / 64 0.973 640 / 24 0.931 640 / 128 0.951
960 / 24 0.954 640 / 128 0.972 640 / 32 0.930 800 / 128 0.949
640 / 32 0.954 960 / 128 0.971 800 / 64 0.930 640 / 24 0.948
800 / 32 0.953 960 / 64 0.971 480 / 64 0.929 800 / 64 0.948

TABLE IV. Top five cross-validated results of grid search for each feature type and segment/frame length (ms) using LSTMs.
STFT MFB MFCC L-MFCC

Seg. / Frame AUC Seg. / Frame AUC Seg. / Frame AUC Seg. / Frame AUC
800 / 64 0.950 640 / 64 0.956 640 / 64 0.938 480 / 64 0.934
640 / 64 0.949 800 / 64 0.955 480 / 64 0.936 640 / 128 0.928
960 / 64 0.948 960 / 128 0.952 640 / 128 0.935 480 / 128 0.928
480 / 32 0.946 800 / 128 0.952 480 / 24 0.932 800 / 128 0.922
480 / 64 0.941 640 / 128 0.952 800 / 128 0.930 640 / 64 0.917

highest performance for each type of feature. The second
experiment optimised the number of MFB filter banks, while
the third experiment considered whether MFCC derivatives
provide any performance improvement, as they do in speech
recognition. Experimental results were compared with a
baseline system using MFCCs with derivatives and a 25 ms
frame shifted by 10 ms.

To ensure the robustness of our results, a stratified cross-
validation scheme was applied to all experiments. Firstly,
the dataset was divided into training and test sets using a
80/20 ratio. Then, using only the training set, features were
evaluated using 10-fold cross validation, in which the folds
were randomly selected and AUC was used as a performance
criterion. The best parameters found for each of the three
experiments were applied to the test set. Both train/test and
inner 10-fold divisions were performed while considering
not only the class stratification but also that sounds from the
same source should be assigned to the same set and fold.

III. RESULTS AND DISCUSSION

A. Evaluation of Features and Segment/Frame Durations

A grid search was performed in order to evaluate the
chosen features extracted with different segment and frame
durations for each classifier described in Section II-C. As
segment lengths, values of 160, 320, 480, 640, 800 and
960 ms were considered while for frame lengths values of
24, 32, 64 and 128 ms were used. Within each segment,
frames were extracted with a 50% overlap.

Segments were extracted from the audio event with a
25% overlap until a maximum length of 1 s was reached,
which correspond to the maximum cough duration [29]. For
segment lengths greater than 500 ms, a single segment was
extracted. All features were computed using the logarithm of

the squared magnitude of the spectral coefficients, to which
40-dimensional mel scaling was applied for MFB, MFCC
and L-MFCC. For both types of MFCCs, the first 13 cepstral
coefficients were used as features.

The five best results for DNN, CNN and LSTM classifiers
are shown in Tables II, III and IV, respectively. Although
there is no single best configuration of segment and frame
durations, larger values generally exhibit better performance
across all considered features and classifiers. Some configu-
rations with short segments also performed well when using
a LSTM classifier, producing the best outcome for L-MFCC.

The success of long frame lengths is an important obser-
vation, as it differs from established practice in automatic
speech recognition systems and also from most previous
cough detectors, which almost always use 25 ms frames.
This is consistent with the fact that deep architectures have
the ability to learn from low level features, which in this case
may be the sound envelope.

From the Tables II, III and IV, lengths of 640 ms and
64 ms for segments and frames are reasonable choices as
they provided improved performance across all considered
features and classifiers. These two parameter values will
be utilized in the remaining experiments, unless otherwise
specified.

It is also evident from Tables II, III and IV that, for all
classifiers, the best performance was achieved with MFB
features. This is consistent with recent progress in speech
recognition using deep architectures.

B. Evaluation of Mel Filter Bank Dimension

Mel filter banks with between 25 and 40 filters have
been commonly used for both MFCC and MFB extraction.
In a second experiment, we investigated the dependence of
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Fig. 2. Cough classification performance as a function of the
filter bank dimension for (a) MFB features and (b) MFCC
features.

performance on the number of filters. For MFB, filter banks
sizes between 10 and 450 have been considered. For MFCCs,
filter bank dimensions between 20 and 45 were considered
for the computation of 13 cepstral coefficients. Results are
depicted in Fig. 2.a for MFB and in Fig. 2.b for MFCCs.

For MFB, best results were obtained with 30, 40 and
150 filter banks for DNN, CNN and LSTM, respectively.
For MFCCs, DNN achieved best performance with 40 filter
banks whereas CNN and LSTM performed best with 30. Fig.
2 confirms that, as in speech recognition, 40 dimensional mel
filter bank are a reasonable choice for cough detection.

C. Evaluation of MFCC Derivatives

Experiments were performed to evaluate whether or not
appended MFCC derivatives provide improvements as com-
monly assumed. This evaluation was performed with 40-
dimensional mel filter banks and 13 cepstral coefficients,
and then computing first and second derivatives. For CNN,
the MFCCs and derivatives were organized in a three-
dimensional fashion as proposed for speech [19]. The results
for MFCC and L-MFCC are presented in Table V. Note
that, in most cases, derivatives do not improve classification
performance. Indeed, deteriorated performance is usually
observed.

D. Test Set Results

Table VI presents results for each classifier on the test set
for all features considered in this study and the baseline fea-
tures. Again, the four studied features used 40-dimensional
mel filter banks and 13 cepstral coefficients.

TABLE V. Cough classification performance in terms of
AUC when using MFCCs with and without derivatives.

Feature DNN CNN LSTM
MFCC 0.914 0.933 0.932
MFCC+∆+2∆ 0.904 0.920 0.905
L-MFCC 0.934 0.954 0.931
L-MFCC+∆+2∆ 0.931 0.945 0.940

TABLE VI. Cough classification performance on the test set.
DNN CNN LSTM

Feature Acc. AUC Acc. AUC Acc. AUC
Baseline 0.792 0.865 0.843 0.915 0.813 0.863
MFCC 0.805 0.881 0.853 0.925 0.847 0.919
L-MFCC 0.857 0.927 0.876 0.944 0.845 0.918
STFT 0.869 0.932 0.877 0.946 0.873 0.938
MFB 0.883 0.940 0.912 0.965 0.866 0.912

We see that similar improvements are observed on the test
set in comparison with the experiments reported in previous
sections, except when using LSTMs. This may be explained
by the fact that audio input sequences for this application
are short and have highly variable length, increasing the
variance of LSTM training, due to its architecture and
learning procedure.

IV. CONCLUSION

We have presented a comparative evaluation of different
acoustic features for automatic cough detection using deep
architectures. MFCC, liftered-MFCC, STFT and MFB fea-
tures were compared using DNN, CNN and LSTM classi-
fiers. To conduct this evaluation, we compiled a dataset with
a substantial number of coughing individuals in comparison
with previous studies.

Our experiments indicate that using a single long audio
segment during feature computation provides better perfor-
mance than the subdivision into smaller overlapped seg-
ments. Additionally, better performance was achieved using
frames longer than the standard 25 ms window. Although
these values may be fine-tuned for a specific architecture,
640 ms segments and 64 ms frames perform well across
all classifiers and features considered. In agreement with
experience in the field of speech recognition, 40-dimensional
mel filter banks also provided good results for both MFCCs
and MFB.

STFT and MFB features provided the best cough detection
accuracies, adding to a growing corpus of research showing
that less-engineered features may provide better performance
with deep architectures.

Although MFCCs have not performed as well as the other
candidates considered, many systems will continue using
these legacy features. In this case, it is advantageous to apply
sinusoidal liftering as it provides a small improvement for
DNN and CNN classifiers, but not for LSTM. MFCC first
and second derivatives did not enhance performance and can
be omitted, thereby reducing feature dimensionality.
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