
CODE-SWITCHED LANGUAGE MODELLING USING A CODE PREDICTIVE LSTM IN
UNDER-RESOURCED SOUTH AFRICAN LANGUAGES

Joshua Jansen van Vüren, Thomas Niesler

Department of Electrical and Electronic Engineering,
Stellenbosch University, Stellenbosch, South Africa

ABSTRACT

We present a new LSTM language model architecture for
code-switched speech incorporating a neural structure that ex-
plicitly models language switches. Experimental evaluation
of this code predictive model for four under-resourced South
African languages shows consistent improvements in per-
plexity as well as perplexity specifically over code-switches
compared to an LSTM baseline. Substantial reductions in
absolute speech recognition word error rates (0.5%-1.2%) as
well as errors specifically at code-switches (0.6%-2.3%) are
also achieved during n-best rescoring. When used for both
data augmentation and n-best rescoring, our code predictive
model reduces word error rate by a further 0.8%-2.6% ab-
solute and consistently outperforms a baseline LSTM. The
similar and consistent trends observed across all four lan-
guage pairs allows us to conclude that explicit modelling of
language switches by a dedicated language model component
is a suitable strategy for code-switched speech recognition.

Index Terms— Code-switching, Bantu languages, n-best
rescoring, language model data augmentation, speech recog-
nition, under-resourced languages

1. INTRODUCTION

Code-switching is the practice of utilising multiple languages
within and between sentences and occurs predominately in
spontaneously spoken speech in multilingual communities.
Improving code-switched speech recognition and language
modelling is an active research area, but has proved to be a
challenging task. The phenomenon is speaker dependent and
occurs rarely when compared with monolingual segments of
speech and text. As a result, corpora of code-switched speech
are generally under-resourced.

Various techniques have been proposed to improve speech
recognition and language modelling in the presence of code-
switching. These include transliteration [1, 2, 3], data-
augmentation using linguistic techniques [4, 5] or neural
networks, and improved language and acoustic model archi-
tectures [6, 7].

Data augmentation by synthetic generation of code-
switched text using neural networks is regularly applied.

LSTM language models [8, 9, 10, 11], generative adversar-
ial networks [12], variational auto-encoders [13], as well as
state of the art transformers [14] and hybrid bidirectional
adversarial transformer networks [15] have been successfully
employed to synthesize code-switched text. Such text can be
used to augment training sets for n-gram and neural language
models.

Generation methods premised on linguistic theories such
as matrix language frame theory [16] and equivalence con-
straint theory [17] have also been shown to successfully
generate artificial code-switched text [4, 5]. Combinations
of both neural and linguistically-based generative techniques
provide further gains [18].

Architectural adaptations have been considered to op-
timise the performance of code-switched language models
and speech recognition systems. For example, perplexity
and speech recognition for code-switched English-isiZulu
was improved by utilising language dependent language and
acoustic models in [19]. Language dependent acoustic and
language models differentiate between the phones and word
tokens of different languages, while no such distinction is
made in language independent models. Distinct improve-
ments in English-Mandarin speech recognition at code-switch
points have been achieved through two adaptations of recur-
rent neural networks applied in n-best rescoring [6]. Firstly,
the output layer is split to model the output word as well as
one of four classes: particles, English, Mandarin, and any-
thing else. The second adaptation splits the input layer in
order to encode both the input word and its part-of-speech.

A novel recurrent neural network that utilises two LSTM
language models to separately model monolingual segments
was presented in [7]. Here the language of the current in-
put word token is used to select the LSTM that models the
next word. This dual LSTM language model was shown to
reduce test set perplexity. Further perplexity improvements
were achieved when the model was used to generate synthetic
data for pre-training.

Our work focuses on developing an improved language
model architecture specifically for code-switched speech, and
that can be applied in both n-best rescoring and data augmen-
tation. In contrast to the research presented in [7], our pro-
posed network contains a specific neural structure that explic-

978-1-6654-7189-3/22/$31.00 ©2023 IEEE

itly models the code of the next word.
The remainder of the paper is organised as follows. Sec-

tion 2 describes the code-switched dataset utilised in this
work. Section 3 motivates and describes the proposed code
predictive model. Section 4 details our experimental setup.
Section 5 discusses the results of the architectural optimisa-
tion and presents results from initial n-best rescoring experi-
ments. Section 6 presents speech recognition experiments in
which the model is utilised to synthesize text which is used
to augment n-gram language model training sets. Finally,
Section 7 concludes.

2. DATASET

Four bilingual sub-corpora of manually transcribed code-
switched speech constitute the dataset used in this work.
The speech was compiled from South African soap opera
episodes [20], and each sub-corpus is made up of a Bantu
language and English, namely English-isiZulu (EZ), English-
isiXhosa (EX), English-Sesotho (ES), and English-Setswana
(ET), as shown in Table 1. Previous work utilising the same
dataset found that incorporating out-of-domain monolingual
corpora into n-gram language models training sets chiefly im-
proves the English word error rate, often at the expense of the
error rate for the under-resourced language [11]. Therefore,
we do not utilise such corpora in this work.

Table 1. The soap opera corpus, showing the total num-
ber of word tokens, word types, and code switches in the
four bilingual sub-corpora. CSEB indicates the number of
switches from English to a Bantu language, while CSBE in-
dicates switches from Bantu to English. The final column
indicates audio duration in hours (h) or minutes (m).

Pair Partition Tok Typ CSEB CSBE Dur

English-isiZulu
(EZ)

Train 52383 10396 2236 2743 4.81h
Dev 1566 866 175 198 8.00m
Test 5656 2305 688 776 30.4m

English-isiXhosa
(EX)

Train 32539 7716 776 1003 2.68h
Dev 2300 1246 91 113 13.7m
Test 2651 1387 328 363 14.3m

English-Sesotho
(ES)

Train 35197 4339 1565 1719 2.36h
Dev 3067 1050 156 166 12.8m
Test 4054 1193 403 396 15.5m

English-Setswana
(ET)

Train 35725 3808 1885 1951 2.33h
Dev 3707 1052 224 251 13.8m
Test 4939 1254 505 526 17.8m

3. CODE PREDICTIVE LANGUAGE MODEL

This section describes the structure of our proposed code pre-
dictive model. The goal of this network is to explicitly model
code-switching by structurally encoding the language switch
into the network, rather than relying on this phenomenon to
be learnt implicitly from the extremely sparse data.

Previous research has highlighted that a chief challenge
in language modelling of code-switched text remains the very

high confusion (in terms of perplexity) at language switches,
which contrasts with the much lower perplexity within the
monolingual segments [11]. It is possible, therefore, that
an architectural mechanism that specifically models code-
switches may benefit the performance of the language model.
In our proposed model, we refer to this additional component
as the code predictor, and its function is to make a binary
selection between two languages.

3.1. Language Model Structure
Structurally, our language model is made up of four compo-
nents: a word embedding layer, a code predictor, and two
monolingual language models, as is illustrated in Figure 1.

The figure shows two sets of vectors which characterize
the flow of information through the network. These are the
language model state vectors (h(i−1)

LM ,c(i−1)
LM) and the code

predictor state vectors (h(i−1)
CP ,c(i−1)

CP). For each word in a
sequence, the code predictor receives the embedding vec-
tor (x(i)

CP) of the current word and its previous state vectors,
h
(i−1)
CP and c

(i−1)
CP , as inputs. On the basis of these inputs,

the code predictor updates its state vectors. The updated hid-
den state vector h(i)

CP is transformed to a single neuron by a
dense layer with a sigmoid activation function. This acts as
a binary classifier, indicating the most likely language of the
next word as a scalar l(i) in the range 0 ≤ l(i) ≤ 1. From
this output, a loss can be computed with respect to the ground
truth language (ṽ(i)).

Similarly, for each successive word, each language model
receives the embedding vector x(i) of the current word and
the previous state vectors h

(i−1)
LM and c

(i−1)
LM . The updated

hidden states (h(i)
LM,E and h

(i)
LM,B) of the two language mod-

els are passed to an associated dense layer which transforms
these to logit vectors (o(i)

E , o(i)
B) with the dimensionality of

the combined bilingual vocabulary dvocab. To form the likeli-
hood vector o(i), the vectors o(i)

E and o
(i)
B are interpolated ac-

cording to the probability of the next language as modelled by
the output l(i) of the code predictor. From this output, a loss
can be computed with respect to the ground truth (v(i)), or
the argmax can be taken to sample the model prediction. Pre-
liminary experiments showed that individually accumulating
and descending gradients associated with the language pre-
dictions and language models produced the best performing
models.

The language predictor output (l(i)) is also used to se-
lect which language model state vectors, (h(i)

LM,E,c(i)LM,E) or

(h(i)
LM,B,c(i)LM,B), are used as the state vectors (h(i)

LM,c(i)LM) for the
next word.

3.2. Language Model Components
This network structure enables the code predictor to explic-
itly select the monolingual LSTM with which to compute the
probability of the next word. Therefore, the code predictor
deals only with the code selection while the language model

LSTM

LSTM

LSTM

English LM

Bantu LM

Code
Predictor

Dense

Dense

Dense

Word
Embedding

Layers

Language
Models

Dense
Layers

Code Predictor
State Vectors

Language
Models State

Vectors

Likelihood
Interpolation

State Vector
Interpolation

 Token

Fig. 1. The structure of the proposed code-switched network
architecture B described in Section 3. The tokens t(i) from
the input sequence (t(0) . . . t(n−1)) are embedded (x(i)

LM and
x
(i)
CP) and presented as input to the three LSTM models. The

network uses two pairs of state vectors, denoted h
(i)
LM,c(i)LM and

h
(i)
CP ,c(i)CP respectively. The predicted language for token t(i+1)

is given by the scalar l(i) (0 ≤ l(i) ≤ 1), and acts as a mask
to select among the two logit vectors o(i)

E and o
(i)
B which are

a transformation of the LSTM language model hidden states
h
(i)
LM,E and h

(i)
LM,B respectively. ⊙ denotes the element-wise

product.

deals only with words in the respective language. In this
way the code predictor learns to model the language switches,
while the monolingual language models observe tokens from
both languages as input but respectively model monolingual
word sequences. This aspect of our approach is novel.

3.2.1. Word Embeddings

The word embedding layer associates each word type in the
combined bilingual vocabulary with a point in a continuous
vector space of dimension dembed. As also listed in Table 2,
we consider both an architecture (B) which has separate em-
bedding layers for the code predictor x(i)

CP and the language
models x(i)

LM (shown in Figure 1) and an architecture (C) that
shares the embedding layer between the three LSTMs. Shar-
ing the embedding layer between the language models and the
code predictor could lead to greater predictive ability due to
an effect reminiscent of multitask training.

3.2.2. Code Predictor

For each word in a sequence, the code predictor receives the
state vectors (h(i−1)

CP ,c(i−1)
CP) from the previous word, as well

as the embedding vector x(i)
CP of the current word.

We consider an architecture (C) in which the code pre-
dictor and the two language models have separate state vec-
tors, and an architecture (D) in which these vectors are shared,
therefore making h

(i)
LM = h

(i)
CP and c

(i)
LM = c

(i)
CP . When the state

vectors are shared, they are first passed to and updated by the
code predictor, and then passed to the language models.

3.2.3. Language Models
For each word in a sequence, both language models update
their respective state vectors (h(i)

LM, c(i)LM) and likelihood vec-
tors (o(i)

E , o(i)
B). We investigate whether or not a hard inter-

polation (l(i) is strictly binary and takes on a value of either
0 or 1) is preferable to a soft interpolation for both the token
likelihood predictions (E) and the state vectors (F).

Finally, we also consider an architecture G in which we
add a language embedding layer y(i) which associates each
language (English and Bantu) with a respective embedding.
This language embedding is concatenated with the token em-
bedding as input to the language models and the code predic-
tor.

4. EXPERIMENTAL SETUP

Our experiments consider text synthesis for n-gram augmen-
tation and automatic speech recognition by means of 50-best
list rescoring.

4.1. Baseline Acoustic Model
The acoustic model in our experiments is a CNN-TDNN-F
model first pre-trained on all the data in the four sub-corpora
(Table 1) and then fine-tuned on the respective bilingual pairs.
This acoustic model was found to offer better performance
than several other considered alternatives, including a state of
the art Wav2Vec2 architecture [21].

We denote the baseline KALDI system using an n-gram
language model as Aϕ [22]. The n-gram in question is a tri-
gram with modified Kneser-Ney smoothing trained only on
the respective training sets shown in Table 1 using the SRILM
toolkit [23]. The vocabulary is closed over all types in each
respective bilingual sub-corpus.

4.2. Baseline Language Models
Our baseline LSTM (system A) contains a single embedding
layer for the input tokens t(i), a single LSTM layer, and a
dense layer with the dimensionality of the vocabulary (dvocab)
such that the network models the likelihood of the next word.

The baseline LSTM and code predictive models were
trained on the bilingual training sets shown in Table 1 until
optimal cross-entropy loss was achieved on the development
set. Additionally, the following hyperparameters were fixed:
256 embedding dimensions for both word and language em-
beddings, 256 recurrent dimensions, a batch size of 32, and
L2 weight regularisation was utilised. During n-best rescor-
ing, the interpolation weight assigned to the n-gram and the
neural language model were optimised using the development
set word error rate.

In order to ensure that the baseline is comparable in terms
of overall number of parameters. We also considered the
effectiveness of deeper and wider LSTM models. When the

Table 2. Baseline LSTM (A), default code predictive (B) and
alternative architectural configurations (C-G) considered for
optimisation.

Alias Configuration

Aϕ Baseline n-gram
A Baseline LSTM

B Separate embeddings per LSTM (Default)
C B with shared embeddings between LSTMs
D C with shared hidden and cell state vectors
E D with soft interpolation of language logits
F E with soft interpolation of hidden and cell state vectors
G E with additional language embedding

state vectors are shared (system D), the code-predictive lan-
guage model can be interpreted as a two layer deep LSTM
that has a larger recurrent dimensionality than the baseline
LSTM (system A). Therefor, we trained a two layer LSTM
network, as well as an LSTM affording the same recurrent
dimensionality as the three LSTMs constituting the code-
predictive network shown in Figure 1. However, neither
alternative provided improvements over the baseline LSTM
(system A). Therefore, system A was chosen as the baseline
LSTM implementation in this study.

4.3. Text Augmentation Strategy
In order to synthesize code switched text, we utilised the
prompting and ablation strategy presented in [11]. We utilise
the same embedding, recurrent and batch size mentioned
above. Each of the neural language models is trained for 30
epochs and used to synthesize text at the end of each epoch.
The synthetic text is used to train an n-gram language model,
therefore we train 30 separate n-gram language models. We
utilise this approach because, in previous research, we found
that our networks synthesize higher quality text when train-
ing continues after the development set loss has converged.
This convergence typically occurred after 5 to 10 epochs.
We then select the n-gram language model which affords
the greatest reduction in development set perplexity among
the 30 optimised n-grams trained on the text generated after
each training epoch. This model is then utilised for lattice
generation.

The augmentation strategy for one n-gram language
model entailed synthesising text in batches of 100,000 se-
quences. Synthesis continues until the development set per-
plexity reductions achieved by a n-gram trained on n pooled
batches of synthesized text and interpolated with the n-gram
trained on the training set improves by less than 0.1% rela-
tive to the interpolated n-gram trained on the previous n − 1
batches. The language model interpolation weight is opti-
mised on the development set perplexity after each batch.

5. RESULTS: ARCHITECTURAL OPTIMISATION
We optimise the model presented in Figure 1 in a greedy
fashion according to the possible variations outlined in Ta-

Table 3. Development set results for the considered con-
figurations during the greedy optimization of the code pre-
dictive network, outlined in Section 5. PP: Overall perplex-
ity. CPP: Perplexity only over code-switches. EZ: English-
isiZulu, EX: English-isiXhosa, ES: English-Sesotho, and ET:
English-Setswana.

EZ EX ES ET
Alias PP CPP PP CPP PP CPP PP CPP

A 976.6 5228.8 888.1 8048.9 350.3 3209.7 204.9 1476.1

B 1017.6 6490.2 762.1 15501.6 336.9 3173.1 206.1 1554.7
C 981.7 6349.6 744.7 15472.6 331.9 3538.6 203.7 1581.8
D 956.1 5498.4 738.6 12284.8 327.8 2958.4 198.7 1567.9
E 904.8 5147.1 744.2 12077.1 322.5 2449.7 199.3 1260.6
F 920.2 5225.3 760.0 13480.0 332.0 2454.5 198.8 1293.0
G 832.1 4841.4 725.4 13198.6 319.1 2728.6 194.2 1358.3

ble 2. We begin by considering the unoptimised model B.
Then, for each row in the table, an alternative configuration
was evaluated and either selected or not based on whether
the average development set perplexity (PPDev) or the associ-
ated code-switched perplexity (CPPDev) were improved over
the four language pairs. The results of this process are pre-
sented in Table 3. The corresponding word error rates for
the best performing systems, obtained by n-best rescoring are
shown in Table 4. In the table, code-switched bigram error
(CSBG) is calculated by measuring the average number of
correctly identified words immediately following a language
switch. We note that improving speech recognition has been
found by other researchers to be extremely challenging for
this dataset [9].

Our unoptimised code predictive model B performs
worse in terms of development set perplexity for isiZulu
and Setswana than the baseline LSTM (A). However, a small
improvement is seen in perplexity for Sesotho, and a relative
improvement of 14.2% is achieved for isiXhosa.

Our first alternative model (C) to the unoptimised model
B, shares the embedding layer between the two LSTM lan-
guage models and the code predictor LSTM. This improves
perplexity across all four language pairs compared to B, and
is therefore adopted for incorporation into our architecture.
In addition, this architecture reduces the model size consider-
ably.

The next architecture (D) is based on model C but shares
the hidden and cell state vectors between the two language
model LSTMs and the code predictor LSTMs. This is
achieved by first passing the vectors to the language predictor,
whose output state vectors are fed to the language models as
input. This afforded improvements in both overall perplexity
and code-switched perplexity on the development set across
all four language pairs, and was therefore incorporated into
the model.

Architecture E utilises the architecture D and additionally
applies a soft interpolation of the likelihood vectors at the out-
put of the two monolingual language models. Table 3 shows

Table 4. 50-best rescoring results for best performing mod-
els on the test set. WER is word error rate %, and CSBG is
the code-switched bigram error rate %. EZ: English-isiZulu,
EX: English-isiXhosa, ES: English-Sesotho, and ET: English-
Setswana.

EZ EX ES ET
Alias WER CSBG WER CSBG WER CSBG WER CSBG

Aϕ 41.8 63.7 42.9 69.5 50.6 67.2 41.9 57.4
A 40.5 61.5 42.5 68.7 50.0 66.8 40.6 55.0

E 40.3 61.1 42.5 69.3 49.7 67.5 39.6 53.2
G 40.7 61.4 42.4 68.6 49.8 66.5 40.7 55.4

that this further improves development set code-switched per-
plexity for all four language pairs. An improvement in over-
all perplexity is also seen for isiZulu and Sesotho. However
small regressions are seen for isiXhosa and Setswana. We
incorporate this operation into our language model due to
the improvements in code-switched perplexity. We note that,
except for the code-switched perplexity of isiXhosa, E out-
performs the baseline LSTM (A) in all four language pairs
(by between 1.6%-23.7% relative). As shown in Table 4,
this models produces the best test set recognition accuracy
for isiZulu, with an absolute improvement of 1.5% compared
the the baseline Aϕ. The best test set speech recognition and
code-switched recognition is also achieved for Setswana, with
absolute improvements of 2.3% and 4.2% compared to base-
line Aϕ.

Incorporating a soft interpolation of the hidden and cell
state vectors (F) at the output of the two monolingual lan-
guage models into architecture E leads to regressions in terms
of overall perplexity and code-switched perplexity of 10 and
380 respectively on average over the four language pairs com-
pared to model E. Therefore, our model maintains the hard
selection of state vectors.

In architecture G, we incorporate a language embedding
into architecture E. The language embedding is concatenated
with the word embedding and presented to the language pre-
dictor and language models as input. This variant achieves
improvements in development set perplexity between 5.2%-
18.3% relative to the baseline LSTM (A). However, code-
switched perplexity deteriorates for three of the language
pairs (except isiZulu) compared to model E. Therefore, we
utilise both models E and G for the experiments in Section 6.

6. RESULTS: AUGMENTATION

Finally, we explore whether the best performing architectural
variations highlighted in Table 4 are able to generate synthetic
code-switched text to further improve speech recognition per-
formance. We hypothesize that the augmented n-gram mod-
els may be able to improve the n-best hypotheses produced
for rescoring. The results from the combination of both n-
best rescoring and augmentation strategies are given in Ta-
ble 5. Specifically, this table presents the results for the two

optimised code-predictive models (E, G), the baseline models
(Aϕ, A), and the intermediate code-predictive model (D).

For isiZulu, Sesotho and Setswana, the optimised config-
uration G achieves the best word error rate, with an absolute
improvement of 1.9%, 1.7%, and 2.6% respectively compared
to the baseline Aϕ, and 0.4%, 0.8%, and 0.8% respectively
compared to the LSTM baseline A. Additionally, absolute
improvements in the recognition at code-switches of 3.7%,
0.9%, and 4.3% compared to baseline Aϕ are achieved for the
same three languages respectively.

In contrast to the initial rescoring experiments in Table 4,
where E outperformed G in speech recognition for isiZulu,
Sesotho, and Setswana, the performance of G surpasses E
when both augmentation and n-best rescoring are applied.
Overall, we find that the combination of augmentation and
n-best rescoring affords improvements in recognition accu-
racy over the baseline for all four language pairs. Further-
more, in all cases except isiXhosa, the performance was the
best achieved by any architecture variation considered. On
the basis of these consistent improvements across all four
language pairs in both language modelling performance and
speech recognition, we conclude that the inclusion of a neural
component to model code-switches is a successful strategy.

Table 5. Test set speech recognition results for combination
of augmentation and n-best rescoring. WER is word error rate
%, and CSBG is the code-switched bigram error rate %. EZ:
English-isiZulu, EX: English-isiXhosa, ES: English-Sesotho,
and ET: English-Setswana.

EZ EX ES ET
Alias WER CSBG WER CSBG WER CSBG WER CSBG

Aϕ 41.8 63.7 42.9 69.5 50.6 67.2 41.9 57.4
A 40.3 60.3 42.6 69.6 49.7 66.2 40.1 53.2

D 40.7 61.7 42.8 70.9 50.6 68.7 39.6 53.7
E 40.3 61.1 42.0 68.3 49.0 66.5 39.8 52.7
G 39.9 60.0 42.1 69.3 48.9 66.3 39.3 53.1

7. CONCLUSIONS

This paper presents a new LSTM language model architecture
which incorporates an additional and specific neural structure
to explicitly model code-switches. We show that our best
model is able to improve overall word error rates by between
0.5%-1.2% absolute across four language pairs compared to
a baseline system. Additionally, we showed improvements in
recognition performance specifically at code-switches of be-
tween 0.6%-2.3% absolute compared to the same baseline.
Finally, we find that using these models to synthesize code-
switched text that is in turn used to augment the training set of
n-gram language models prior to n-best decoding and rescor-
ing produces further improvements in recognition accuracy
of 0.8%-2.6% absolute compared to the baseline. Overall, we
observe that the code predictive language model affords con-
sistent improvements across all four language pairs in both
speech recognition accuracy as well as language modelling

perplexity. These consistent improvements indicate that the
inclusion of a specific component to model language transi-
tions is a successful strategy for the language modelling of
code-switched speech. In future work we aim to evaluate fur-
ther architectural variations of the code predictive component.

8. ACKNOWLEDGEMENTS
This research was supported by the Department of Sports,
Arts and Culture of the Republic of South Africa. We would
also like to thank the South African Centre for High Perfor-
mance Computing (CHPC) for providing computational re-
sources on their Lengau cluster for this research.

9. REFERENCES

[1] Jesse Emond, Bhuvana Ramabhadran, Brian Roark, Pe-
dro Moreno, and Min Ma, “Transliteration based ap-
proaches to improve code-switched speech recognition
performance,” in Proc. IEEE Spoken Language Tech-
nology Workshop (SLT), Athens, Greece, 2018.

[2] Min Ma, Bhuvana Ramabhadran, Jesse Emond, Andrew
Rosenberg, and Fadi Biadsy, “Comparison of data aug-
mentation and adaptation strategies for code-switched
automatic speech recognition,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Brighton, United Kingdom, 2019.

[3] Samuel Thomas, Kartik Audhkhasi, and Brian Kings-
bury, “Transliteration based data augmentation for train-
ing multilingual ASR acoustic models in low resource
settings,” in Proc. Interspeech, Shanghai, China, 2020.

[4] Grandee Lee, Xianghu Yue, and Haizhou Li, “Linguis-
tically motivated parallel data augmentation for code-
switch language modeling,” in Proc. Interspeech, Graz,
Austria, 2019.

[5] Karan Taneja, Satarupa Guha, Preethi Jyothi, and Basil
Abraham, “Exploiting monolingual speech corpora for
code-mixed speech recognition,” in Proc. Interspeech,
Graz, Austria, 2019.

[6] Heike Adel, Ngoc Thang Vu, Franziska Kraus, Tim
Schlippe, Haizhou Li, and Tanja Schultz, “Recurrent
neural network language modeling for code switching
conversational speech,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), Vancouver, Canada, 2013.

[7] Saurabh Garg, Tanmay Parekh, and Preethi Jyothi,
“Code-switched language models using dual RNNs and
same-source pretraining,” in Proc. Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Brussels, Belgium, 2018.

[8] Emre Yilmaz, Henk van den Heuvel, and David van
Leeuwen, “Acoustic and textual data augmentation for
improved ASR of code-switching speech,” in Proc. In-
terspeech, Hyderabad, India, 2018.

[9] Astik Biswas, Emre Yilmaz, Febe de Wet, Ewald
van der Westhuizen, and Thomas Niesler, “Semi-
supervised development of ASR systems for multi-
lingual code-switched speech in under-resourced lan-
guages,” in Proc. 12th Language Resources and Evalu-
ation Conference (LREC), Marseille, France, 2020.

[10] Atsunori Ogawa, Naohiro Tawara, and Marc Delcroix,
“Language model data augmentation based on text do-
main transfer,” in Proc. Interspeech, Shanghai, China,
2020.

[11] Joshua Jansen van Vueren and Thomas Niesler, “Op-
timised code-switched language model data augmenta-
tion in four under-resourced South African languages,”
in Proc. SPECOM, St. Petersburg, Russia, 2021.

[12] Ching-Ting Chang, Shun-Po Chuang, and Hung-Yi Lee,
“Code-switching sentence generation by generative ad-
versarial networks and its application to data augmenta-
tion,” in Proc. Interspeech, Graz, Austria, 2019.

[13] Bidisha Samanta, Sharmila Reddy, Hussain Jagirdar,
Niloy Ganguly, and Soumen Chakrabarti, “A deep gen-
erative model for code switched text,” in Proc. 28th
International Joint Conference on Artificial Intelligence
(IJCAI), Macao, 2019.

[14] Ishan Tarunesh, Syamantak Kumar, and Preethi Jyothi,
“From machine translation to code-switching: Gener-
ating high-quality code-switched text,” arXiv preprint
arXiv:2107.06483, 2021.

[15] Yingying Gao, Junlan Feng, Ying Liu, Leijing Hou, Xin
Pan, and Yong Ma, “Code-switching sentence genera-
tion by BERT and generative adversarial networks,” in
Proc. Interspeech, Graz, Austria, 2019.

[16] Carol Myers-Scotton, Duelling languages: Grammati-
cal structure in codeswitching, Oxford University Press,
1997.

[17] Shana Poplack, “Sometimes I’ll start a sentence in
Spanish y termino en español: Toward a typology of
code-switching,” The bilingualism reader, vol. 18, no.
2, pp. 221–256, 2000.

[18] Xinhui Hu, Qi Zhang, Lei Yang, Binbin Gu, and
Xinkang Xu, “Data augmentation for code-switch
language modeling by fusing multiple text generation
methods,” in Proc. Interspeech, Shanghai, China, 2020.

[19] Ewald van der Westhuizen and Thomas Niesler, “Au-
tomatic speech recognition of English-isiZulu code-
switched speech from South African soap operas,” Pro-
cedia Computer Science, vol. 81, pp. 121 – 127, 2016.

[20] Ewald van der Westhuizen and Thomas Niesler, “A
first South African corpus of multilingual code-switched
soap opera speech,” in Proc. Eleventh International
Conference on Language Resources and Evaluation
(LREC), Miyazaki, Japan, 2018.

[21] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli, “wav2vec 2.0: A framework for self-
supervised learning of speech representations,” in Ad-
vances in Neural Information Processing Systems, Vir-
tual, 2020.

[22] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely, “The Kaldi
speech recognition toolkit,” in Proc. IEEE Workshop
on Automatic Speech Recognition and Understanding
(ASRU), Hawaii, USA, 2011.

[23] Andreas Stolcke, “SRILM-an extensible language mod-
eling toolkit,” in Proc. Seventh International Confer-
ence on Spoken Language Processing (ICSLP), Col-
orado, USA, 2002.

