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Abstract. Annotating a multilingual code-switched corpus is a painstak-
ing process requiring specialist linguistic expertise. This is partly due
to the large number of language combinations that may appear within
and across utterances, which might require several annotators with dif-
ferent linguistic expertise to consider an utterance sequentially. This is
time-consuming and costly. It would be useful if the spoken languages in
an utterance and the boundaries thereof were known before annotation
commences, to allow segments to be assigned to the relevant language
experts in parallel. To address this, we investigate the development of a
continuous multilingual language diarizer using fine-tuned speech repre-
sentations extracted from a large pre-trained self-supervised architecture
(WavLM). We experiment with a code-switched corpus consisting of five
South African languages (isiZulu, isiXhosa, Setswana, Sesotho and En-
glish) and show substantial diarization error rate improvements for lan-
guage families, language groups, and individual languages over baseline
systems.

Keywords: Language Diarization · Code-Switched Speech · Low-Resource
· WavLM

1 Introduction

Prevalent in multilingual societies, code-switched (CS) speech is the phenomenon
where two or more languages are used within the same conversation or utterance
[25]. The development of automatic speech recognition (ASR) systems to model
such speech typically require large amounts of data, which is often challenging
to collect. Past attempts at compiling such a multilingual CS corpus have re-
lied on a complex iterative process to transcribe audio recordings [30]. First, a
principal transcriber segments a file into utterances and annotates their primary
language. All unlabelled segments are passed to the next transcriber, who will
in turn annotate their primary language. This iterative process is repeated until
there are no more unlabelled segments. Prior knowledge of the specific language
boundaries within a given utterance would allow this iterative process to be
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parallelised, saving time and reducing the human capital needed to orchestrate
the previously described complex process. With the aim of extending a current
multilingual CS corpus, we investigate the development of a simple end-to-end
language diarization (LD) system to aid in this task.

There is limited recent literature that addresses LD for CS speech [16]. More-
over, speech representations extracted from large pre-trained self-supervised
acoustic models have yet to be leveraged in this domain despite being shown
to perform well on a variety of downstream acoustic tasks [32]. In this work,
we investigate the application WavLM [5], a recent architecture of this kind
that achieves state-of-the-art performance on a suite of down-stream language
tasks, for LD [32]. We experiment with a corpus of low-resource multilingual
code-switched soap opera speech, comprising English and four other low-resource
South African languages (isiZulu, isiXhosa, Setswana, Sesotho). AlthoughWavLM
is pre-trained on monolingual English, we show that it transfers well to low-
resource LD, and substantially improves upon previously proposed architectures
for the same task.

2 Background

Broadly, both prelexical information (phonetic repertoire, phonotactics, rhythm
and intonation) and lexical-semantic knowledge (meaning) is utilised when deter-
mining a spoken language [22][33], with inexperienced human listeners effectively
able to identify languages relying only on the former, implying language iden-
tification (LID) can be performed with minimal content understanding [20][27].
Both phonotactic and acoustic features are effective representations when build-
ing systems to perform LID [34][19]. Typically, phonotactic systems utilise a
bank of monolingual large vocabulary continuous speech recognition (LVCSR)
systems run in parallel, one for each language. The one producing the highest
log-likelihood for the recognised word sequence is selected as the language spo-
ken [18][23][12]. This requires corpora with which to train each LVCSR system,
which is not feasible for the low-resource languages often found in CS speech.

Unlike phonotactic approaches, acoustic systems attempt to learn a distri-
bution across languages directly from acoustic features, and as such are more
relevant to this work. Whilst early work relied on classical algorithms (GMMs,
SVMs or LR) [21][31][26][2][15], more recently, attention has shifted to end-to-
end architectures using deep neural networks [10][17][24][9][29][8][3]. However,
these systems tend to solve a sequence-to-one problem, whereby a single em-
bedding is extracted from a variable length utterance and hence assume only a
single language is being spoken. This is insufficient for our task, for which spoken
languages can change throughout a single utterance.

Whilst to the best of our knowledge there has been no work in LD for South
African languages, recently one study has successfully demonstrated the use of
end-to-end acoustic based systems for code-switched LD [16]. In this approach,
popular deep-learning-based speaker diarization approaches were applied to LD,
yielding promising results. Long short-term memory networks and transformer-
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based systems were trained and evaluated on a corpus comprising 52 hours of
speech from three bilingual CS subcorpora (Gujarati-English, Tamil-English and
Telugu-English). Systems trained for bilingual diarization and multilingual di-
arization performed well, with accuracies exceeding 80%.

well whoever it is ke setse ke mo rata

English

Sesotho

English

Sesotho

Fig. 1: A simple representation of a sampled code-switched utterance waveform
u between English and Sesotho and the corresponding ground truth language
labels y, and those predicted by a LD system ŷ.

2.1 Language Diarization

As it is fundamental to our work, we formally describe the task of LD, reinforced
by a simple example. Given a sampled utterance waveform u = (un ∈ R|1, ..., N)
with language labels y = (yn ∈ [C]|n = 1, ..., N), where N is the number of sam-
ples and C is the set of languages that are to be identified, let the function
G(u; θ), where θ are learnable parameters, be the function that estimates lan-
guage labels ŷ = (ŷt ∈ [C]|1, ..., T ) for non-overlapping segments of u of sample
length N

T , where T is the number of segments. We illustrate this with simple CS
example in Figure 1. Note how the period of predicted label segments is larger
than the ground truth.
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3 Corpus

We perform our LD experimentation using a multilingual CS corpus compiled
from South African soap operas [30]. The corpus consists of 14.3 hours of anno-
tated and segmented speech taken from 626 South African soap opera episodes,
divided into four language-balanced subcorpora. Each subcorpus contains mono-
lingual and CS utterances in English and one of four Bantu languages: isiZulu,
isiXhosa, Setswana and Sesotho. We will refer to these subcorpora as English-
isiZulu (E-Z), English-isiXhosa (E-X), English-Setswana (E-Se) and English-
Sesotho (E-So). The subcorpora are each split into training, development, and
test sets. The four Bantu languages in the corpus represent the two most widely
spoken South African Bantu language groups. Namely, the Nguni languages
(IsiZulu and isiXhosa), and the Sotho-Tswana languages (Setswana and Sesotho).
Language groups are collections of languages with similar linguistic roots and
characteristics. It is worth noting the proportional spread of the utterances across
the subcorpora. Although each subcorpus is language-balanced, the E-Z subcor-
pus contains roughly twice as much data as the other subcorpora. The exact
breakdown in terms of subcorpora is presented in Table 1.

The corpus contains utterances with a mixture of intersentential and intrasen-
tential code switches, with the former occurring between sentences and the latter
within sentences. Intrasentential code-switching can occur at a morpheme level
within words, with a word such as amasponsors being indicated as a switch from
isiZulu to English. The rapid nature of the code-switching combined with the
relatively fast pace of the soap opera speech requires high resolution LD which
is hard to achieve [30].

Even for soap opera speech, where language switches are frequent, many
utterances remain monolingual. In total, only 6.3 of the 14.3 hours of speech
correspond to utterances with code switches. Of this, only ≈4.5 hours appear
in the training set. However, while CS utterances are relatively sparse in the
training set, the corpus design has ensured that they form a larger portion of
the development set, whilst the test set is entirely comprised of CS speech.

Subcorpus Train Dev Test Total

E-Z 288.60 8.00 30.40 327.00
E-X 160.54 13.68 14.34 188.58
E-Se 139.74 13.83 17.83 171.60
E-So 141.72 12.77 15.54 169.80

Table 1: The amount of data (in minutes) in the training (train), development
(dev) and test sets of the four subcorpora.
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Fig. 2: Network diagram for the two-stage baseline BiLSTM LD system.

4 Models

We consider the application of three architectures for end-to-end LD. The first
two approaches, which serve as our baselines, respectively utilise a two-stage
bidirectional long short-term memory (BiLSTM) network and an x-vector trans-
former architecture as proposed in [16]. We also introduce the pre-trained self-
supervised acoustic representation model considered in this work, WavLM.

4.1 BiLSTM

Initially proposed for speaker diarization [7], a two-stage BiLSTM architecture
has been shown to perform well for LD [16]. A sequence of T acoustic feature
vectors X = (xt ∈ Rd|t = 1, ..., T ) are extracted from an utterance. A set of
N BiLSTM layers are used to generate language representations B = (bt ∈
R2H |t = 1, ..., T ) from X, followed by M BiLSTM layers to estimate the the

sequence of language labels Ŷ = (yt ∈ R|C||t = 1, ..., T ) where C is the set
of languages that are to be identified. In addition to computing the frame-wise
cross-entropy (CE) loss between the ground truth labels Y = (yt ∈ [C]|1, ..., T )
and Ŷ, a deep-clustering (DC) loss [11] is used to encourage B to be language
discriminative as shown in Equation 1 where et ∈ RH is an emending of bt

and α is a regularisation parameter. A high-level depiction of this architecture
is presented in in Figure 2.

L = αLCE(yt, ŷt) + (1− α)LDC(yt, et) (1)

We use the same architectural hyper-parameters as previous applications of
this architecture to LD of CS speech, with H, N , M , and α set to 256, 2, 3, and
0.5 respectively [16].

4.2 X-vector Self-Attention

X-vector Self-Attention (XSA) is another end-to-end architecture proposed for
LD in [16]. First, x-vectors E = (et ∈ RH |t = 1, ..., S) are extracted for non-
overlapping segments of length s of acoustic feature representations X′ = (xt ∈
Rs×d|t = 1, ..., S) for a given utterance. Note x-vectors simply refer to a fixed-
sized neural embedding extracted for an arbitrary length of speech. E is then
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Fig. 3: Network diagram for the XSA LD system.

sinusoidally positionally encoded, and passed through a series of M stacked
self-attention (transformer encoder) modules, as illustrated in Figure 3. The x-
vector extractor’s time-delayed neural network (TDNN) is made up of a series
of temporal convolutional layers, the outputs of which are pooled over the time
dimension (mean and variance) and linearly projected. The cross-entropy be-
tween Y = (yt ∈ [C]|1, ..., S) and segment level language predictions made with

the output of the transformer network ŶT = (ŷT
t ∈ R|C||t = 1, ..., S), and the

output of the x-vector extractor ŶX = (ŷX
t ∈ R|C||t = 1, ..., S) are used in a

multi-objective loss as shown in Equation 2 for a single segment, where α is a reg-
ularisation parameter. Whilst ŶX is not used to make actual predictions come
test time, its inclusion encourages the x-vector extractor to learn segment-level
language information.

L = αLCE(yt, ŷ
T
t ) + (1− α)LCE(yt, ŷ

X
t ) (2)

We use the same architectural hyper-parameters as in previous applications
of this architecture to LD of code-switched speech, with H, M , and α set to 256,
4, and 0.5 respectively [16].

4.3 WavLM

Large transformer-based acoustic language models have proven successful in cap-
turing complex contextualised representations for a multitude of speech tasks
[32]. WavLM [5] resembles other self-supervised speech representation frame-
works such as wav2vec2.0 [1] and HuBERT [13], whereby a temporal convo-
lutional feature extractor extracts audio representations X = (xt ∈ RH |t =
1, ..., T ) directly from a 16kHz waveform u. These are subsequently fed into a
large transformer encoder consisting of L blocks, where the last encoder out-
puts a sequence of contextual representations CL = (cLt ∈ RH |t = 1, ..., T )
which are used to solve a masked learning objective. Whilst other frameworks
have achieved great success in speech recognition, they disregard information
important for other speech tasks such as paralinguistics, speaker identity and se-
mantics. WavLM addresses these shortcomings by introducing a masked speech
denoising and prediction HuBERT-like loss term. For a given utterance u, noisy
or overlapped speech is manually simulated by sampling noise or other utter-
ances from the batch to produce u′ which is then fed into the convolutional
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feature extractor generating the feature sequence X that corresponds to a 20ms
framerate (i.e. a downsampling factor from waveform to feature representa-
tion of 320×). M tokens in X are masked, and a set of discrete pseudo-labels
zk = (zkt ∈ [Ck]|t = 1, ..., T ) are predicted from CL. The pseudo-labels are
the acoustic unit cluster in the set of clusters Ck that cccLt should belong to,
discovered in an acoustic unit discovery step with either HuBERT embeddings
(first-stage), or latent representations CL′

extracted from the architecture it-
self (second-stage). Predictions are made for K acoustic unit sets, each with a
different granularity (number of clusters) to facilitate the learning of different
speech attributes. The distribution over the pseudo-labels p is parameterized in
the same way as HuBERT, resulting in the below loss function being used for
self-supervised learning.

L =
∑
k∈K

∑
t∈M

log pk(zkt |cLt ) (3)

By keeping the original pseudo-labels for induced noisy/overlapped speech in
an utterance, the network is forced to denoise the input, resulting in improved
robustness for complex acoustic environments. Additionally, each transformer
encoder consists of a convolution-based relative position embedding layer, which
uses a relative position bias to allow the positional encoding to change based on
the content of the input sequence [6].

WavLM is trained on an extremely large English corpus, which includes 94k
hours from LibriLight [14], 10k hours from GigaSpeech [4] and 24k hours from
VoxPopuli [28]. We use two of the released pre-trained models of varying size
in our work, namely WavLM-base+ (H = 768, L = 12) and WavLM-large
(H = 1024, L = 24). For both, we use the contextual embeddings from the
last transformer encoder layer CL for language diarization by attaching a sim-
ple linear layer that maps each embedding cLt to a distribution over the possible
C languages being spoken over time Ŷ. As with the BiLSTM baseline, we com-
pute the frame-wise CE loss between Ŷ and Y. A high-level depiction of the
network is presented in Figure 4.

5 Experimental Procedure

To investigate the extent to which accurate diarization of code-switched speech
can be achieved in the presence of multiple low-resource Bantu languages, each
architecture is applied to three hierarchical diarization tasks:

1. English/Bantu: All four Bantu languages are grouped and the network
determines whether the language spoken in a segment is English or belongs
to the Bantu family.

2. English/Nguni/Sotho-Tswana: The Bantu languages are grouped ac-
cording to their respective language groups and the network determines
whether the language spoken in a segment is English, a Nguni language
or a Sotho-Tswana language.
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Fig. 4: Network diagram for the WavLM based LD system.

3. English/isiZulu/isiXhosa/Setswana/Sesotho: The network determines
whether the language spoken in a segment is English, isiZulu, isiXhosa,
Setswana or Sesotho.

Given the limited amount of training data and the substantial linguistic simi-
larities between these languages, differentiating between various Bantu languages
is a challenging task. In turn, the aforementioned three hierarchical tasks can be
seen as increasing in complexity as we increase the number of Bantu language
categories to be identified. Furthermore, while the monolingual utterances in the
training data will still allow the architectures to learn underlying representations
of the languages, the lack of CS utterances could affect their ability to correctly
categorise segments in the presence of rapid language changes.

Both baseline systems are trained with the same configurations used in [16],
with the exception that we increase the batch size to 64. When training the
WavLM models, we use a learning rate of 1×10−4 and a weight decay of 1×10−4

with the AdamW optimizer. We use a batch size of 4 with 16 gradient accumula-
tion steps, and train for 16 epochs. The learning rate is increased linearly for the
first 1000 steps, followed by an exponential decay. We include label smoothing
for all cross-entropy loss terms, set to 0.1. When training systems for tasks 2 and
3, we initialise model parameters with the corresponding architectures weights
attained from training for the previous task, as it always resulted in improved
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performance during development. Additionally, for tasks 2 and 3 we remove all
monolingual English utterances from the training set in an attempt to increase
the proportional Bantu language representation across the set. All optimization
and hyper-parameter tuning was conducted using the development set whilst we
present and evaluate the performance of the architectures using the test set. We
make the source code used for experimentation available 1.

5.1 Data Preparation and Feature Extraction

Samples in each mini-batch are zero-padded to the longest sequence in the re-
spective batch and predictions made corresponding to these padded regions are
disregarded during loss computation and evaluation. For transformer-based ar-
chitectures, a padding mask is used to ignore these regions when computing
self-attention. To acquire language labels for the segment-level language pre-
dictions made by each architecture, we first convert the time-stamped language
boundaries provided by the corpus to a set of continuous language labels (a label
for each sample of the utterance waveform) y = (yn ∈ [C]|n = 1, ..., N), where
N is the number of samples in the digital waveform. y is then down-sampled to
ỹ = (ỹt ∈ [C]|t = 1, ..., T ), where T is the number of segment predictions made
by each architecture.

For both baseline systems we use 23-dimensional mel-spectrograms as acous-
tic feature vectors, with a frame length of 25ms and hop length of 10ms as in [16].
Since the corpus we use provides language boundaries for each utterance and not
labels for discrete segments, we do not have to further divide mel-spectrograms
into 200ms (19 frames) segments as in [16] for the BiLSTM architecture. How-
ever, we do have to conduct this division for the XSA architecture as the x-vector
extractor is specifically designed to extract representations for such segments. In
this case, the corresponding language label for each segment is the frame-wise
language label that occurs the most often.

5.2 Evaluation Metrics

We use the error rate as our primary evaluation metric, which quantifies the
proportion of incorrectly identified language segments as shown in Equation 4.
Although a good representation of general system performance, the global error
rate (GER), which computes the proportion of incorrect predictions across the
entire evaluation set, can potentially be dominated by longer utterances. To
quantify error rates on a per-utterance level, we also compute the mean error
rate (MER) across utterances.

ER =
Incorrect Predictions

Total Predictions
(4)

1 https://github.com/GeoffreyFrost/code-switched-language-diarization

https://github.com/GeoffreyFrost/code-switched-language-diarization
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#Params Task 1 Task 2 Task 3

GER MER GER MER GER MER

BiLSTM 9M 32.50 33.07 47.22 47.97 57.76 58.76
XSA 12M 36.50 38.17 48.90 51.73 59.70 62.82
WavLM-base+ 95M 12.57 14.87 15.96 19.17 33.55 37.18
WavLM-large 317M 10.05 11.94 12.93 16.12 32.80 36.76

Table 2: Test set GER and MER (%) for each respective diarization
task. Task 1 denotes English/Bantu diarization, Task 2 diarization denotes
English/Nguni/Sotho-Tswana, and Task 3 denotes diarization of all languages.

6 Results and Discussion

We present the error rates for the three diarization tasks using our chosen archi-
tectures in Table 2. The two variations of the WavLM model achieve substantial
improvements over the baseline architectures across all three tasks. The WavLM-
large architecture provides the best overall performance, with the lowest GER
and MER achieved being for task 1 (10.05% and 11.94% respectively). The per-
formance of all the architectures degrades with an increase in the granularity of
the language categories which also results in a decrease in the number of training
utterances per category. This is particularly prevalent in our two baseline mod-
els, with absolute GER increases of 14.72% from task 1 to task 2 and by 10.54%
from task 2 to task 3 for the BiLSTM, and absolute increases of 12.4% from task
1 to task 2 and by 10.80% from task 2 to task 3 for the XSA architecture. These
baseline architectures use randomly initialised weights and do not benefit from
the same pre-training scheme as the WavLM architectures, making them more
reliant on a larger amount of training data to achieve good results. However, the
WavLM architectures do see a larger relative decrease in performance between
task 2 and task 3. We also note that for all networks and tasks the GER is lower
than the MER indicating that diarization error is dependent on the length of
the utterance. This makes sense, as longer segments of speech have more con-
textual language information, which makes the language diarization task easier
to perform.

To further analyse the performance of WavLM and investigate the potential
cause of the large performance degradation from task 2 to 3, we present the con-
fusion matrices for both with predictions generated by the WavLM-large archi-
tecture in Figure 5. By analysing the confusion matrix for task 3 (Figure 5b), its
clear the degradation in performance is a result of incorrect language identifica-
tion within the Nguni and Sotho-Tswana language groups. Albeit that WavLM’s
acoustic representations are comparatively effective for LD, these are grounded
in English through its monolingual self-supervised pre-training scheme. Thus,
the language structure that distinguishes languages within the same group, es-
pecially aspects that could not be learnt during English pre-training (e.g. syntax
and phonology), are harder to learn.
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Comparing the presented confusion matrices provides further insight into
the influence of language groups on LD performance. Despite there being more
training data available for the Nguni language group than for the Sotho-Tswana
language group, by observing the confusion matrix presented in 5a it is clear that
accuracies for the two classes are essentially the same for task 2. The confusion
matrix for task 3 presented in Figure 5b shows how the Nguni languages benefit
from this additional data, with improved isiZulu and isiXhosa accuracy compared
to Sesotho and Setswana. However, as already discussed, there is a large degree
of confusion within both Bantu language groups. Clearly the distinct nuances
that distinguish languages within the same group are substantially more difficult
to discern compared to those that differentiate groups within the same family.
In addition to previously described effects of WavLM’s monolingual English pre-
training, this behaviour is potentially exacerbated by the use of the weights
attained from task 2 to initialise the model for task 3, although the subsequent
training should have tuned the model to correctly differentiate between the two
classes within the Bantu and Sotho-Tswana language groups.

WavLM-large performs particularly well on identifying isiZulu, potentially
due to the language being over-represented during training compared to other
Bantu languages. This is further reinforced when considering the amount of isiX-
hosa misidentified as isiZulu, noting that for this language there is roughly half
the amount of training data. In contrast, the equal (and lower) representation
of both Sesotho and Setswana during training results in similar (and higher)
confusion between the two.
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Fig. 5: Confusion matrices depicting the accuracy of the WavLM-large architec-
ture on Task 2 (English/Nguni/Sotho-Tswana) and Task 3 (all languages).
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7 Conclusion

In this work, we investigated the application of fine-tuned speech representa-
tions extracted from a large pre-trained self-supervised architecture (WavLM)
for language diarization of code-switched speech. Through experimentation con-
ducted with a code-switched corpus comprising five South African languages,
we showed that utilising such an architecture can improve upon previously pro-
posed systems for the same task. Despite being pre-trained on a monolingual
corpus (English), WavLM was able to improve upon baseline systems when
tasked with diarizing English/Bantu, English/Nguni/Sotho-Tswana and En-
glish/isiZulu/isiXhosa/Setswana/Sesotho coded-switched speech, reducing error
rates by between 21.13% and 31.85% absolute compared to the best perform-
ing baseline system. Whilst individual language accuracies are too low to aid
in fully-parallelized corpora annotation, surprisingly good performance was ob-
served when performing language group diarization. Such performance may be
sufficient to assign segments of utterances to language group streams (i.e. En-
glish, Nguni and Sotho-Tswana) reducing the number of language experts a
segment may need to be sequentially reviewed by.

7.1 Limitations and Future Work

Due to computation and time constraints, this study was limited to explor-
ing only one self-supervised architecture for LD. Additionally, disproportionate
amounts of training data for each language may have influenced results. In fu-
ture work, we aim to more rigorously investigate the application of self-surprised
models to LD. This includes investigating if monolingual pre-training hinders
the ability to reliably learn the discrete differences between languages within
the same group by comparing the use of multilingual self-supervised models for
the same task (such as wav2vec2-XLSR).
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