

UNIVERSITEIT

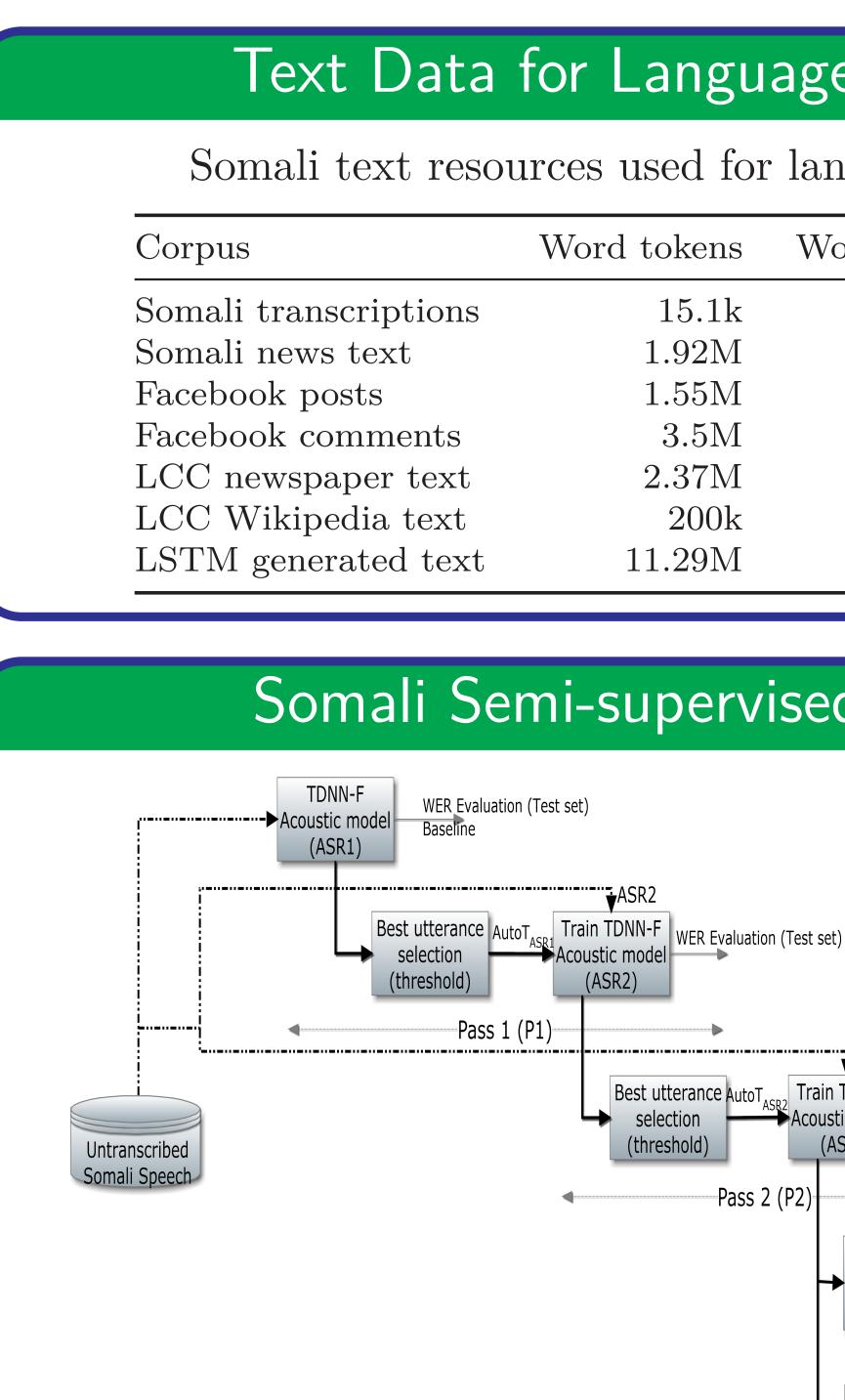
STELLENBOSCH

UNIVERSITY

Improved low-resource Somali speech recognition by semi-supervised acoustic and language model training

Summary

We present improvements in automatic speech recognition (ASR) for Somali, a currently extremely under-resourced language. This forms part of a continuing United Nations (UN) effort to employ ASR-based keyword spotting systems to support humanitarian relief programmes in rural Africa. Using just 1.57 hours of annotated speech data as a seed corpus, we increase the pool of training data by applying semisupervised training to 17.55 hours of untranscribed speech. Three semi-supervised training passes were performed, where the decoded output from each pass was used for acoustic model training in the subsequent pass. The automatic transcriptions (AutoT) from the best performing pass were used for language model augmentation. To ensure the quality of automatic transcriptions, decoder confidence is used as a threshold.


Background

- The success of Ugandan radio browsing system deployed by the United Nation for humanitarian relief application inspired to do the same for Somali.
- Somali is an Afroasiatic language. It is the official language of Somalia and widely used its neighbouring countries.
- Somali is an agglutinative language, the number of unique word tokens is large
- The preprocessed audio stream is passed to the ASR system which generates lattices which are subsequently searched for predefined keywords.
- Human analysts further process the data which aid in humanitarian decision making and situational awareness.
- Given the amount of Somali transcriber speech, multilingual acoustic model training found promising.

Acoustic Data

- This small dataset of speech captured from broadcast Somali radio phone-in programmes and transcribed manually (ManT), contains only:
 - 1.57 hours training speech that is available for training and -10 minutes for testing.
- Other transcribed language resources used were:
 - Luganda (9.6h)
 - Acholi (9.2h)
 - Ugandan English (6.0h)
 - South African English (20.0h)
- For semi-supervised training, approximately 17.55 hours of untranscribed Somali speech, collected from phone-in programme.

Astik Biswas, Raghav Menon, Ewald van der Westhuizen, Thomas Niesler Stellenbosch University, South Africa

Semi-supervised training framework for Som untranscribed speech is being fed to transcribed

- Three iterations of semi- supervised t
- Average decoder Confidence thresho iteration to select best transcriptions.
- ASR2 and ASR3 were retrained with speech respectively.
- Final pass (ASR3), evaluated with tw 17.55h (threshold=0) and 9.86h Auto'
- All acoustic models were factorised (10 time-delay layers followed by a rat

Perplexity Evaluation

LM	Sources	Optimized on	AutoT	PPval	PPtst
LMbase	T1, T2-T4, T7	Test set	no		269.80
LM2	T1, T2-T7	Test set	no	_	253.60
LM3	T1, T2-T7	Validation set	no	576.98	321.31
LM4	T1, T2-T7	Test set	yes(ASR2)	_	260.94
LM5	T1, T2-T7	Test set	yes (ASR2)	500.49	300.25

odeling			Resu	ts			
ge modelling	Word error r	ate(%) on Somal	i test set	of different ty	pes of So	omali AS	
Sentences			Training data size (h)				
1.3k 59.2k	System	Type	ManT	AutoT		PPval	
54.9k 215.3k	ASR1	Supervised	46.37		0.00	53.68	
100k	ASR2		46.37	$\operatorname{AutoT}_{ASR1}$	9.11	51.91	
0k	ASR3	Semi-supervised	46.37	$\operatorname{AutoT}_{ASR2}$	9.58	50.95	
	ASR4	Denn-Supervised	46.37	$\operatorname{AutoT}_{ASR3}$	17.55	51.71	
	ASR5		46.37	$\operatorname{AutoT}_{ASR3}$	9.86	51.09	
Evaluation (Test set)		ed when training		0 0	-	•1 1	
toT _{ASR3(NT)} Train TDNN-F Acoustic model (ASR4)	• TDNN	-LSTMs perform -LSTM system vement in WER o	for 4 C	S pairs shows	s a 7.88	8% relati	
ASR3(NT) Train TDNN-F Acoustic model WER Evaluation (Test set)	• TDNN	LSTM system vement in WER	for 4 C	S pairs shows d to TDNN-L	s a 7.88	8% relati	
Train TDNN-F Acoustic model (ASR4) WER Evaluation (Test set) WER Evaluation (Test set) 3 (P3)	 trend. TDNN improv These trained investi 	-LSTM system vement in WER of C experiments rep I on multiple co gation for Africa	for 4 C compare Conclus resent fi de-switc n langua	S pairs shows d to TDNN-L Sions Inst multilingu shed datasets, ages.	s a 7.88 STM ba al acous and the	8% relati seline. stic mode e first su	
WER Evaluation (Test set) → represents	 trend. TDNN improv These trained investi System origina Nguni 	LSTM system vement in WER of communication for Africa a performance be ates from a close language rather	for 4 C compare Conclus resent fi de-switc n langua nefits mangua ly relate than a S	S pairs shows d to TDNN-L Sions Inst multilingue hed datasets, ages. ost when addited language, in Sotho language	s a 7.88 STM ba al acous and the tional tra h this ca	3% relations and a se anoth	
WER Evaluation (Test set)	 trend. TDNN improv These trained investi System origina Nguni Best o 	E-LSTM system vement in WER of comments repaired on multiple condition for Africa of performance be ates from a close language rather verall performan	for 4 C compare Conclus resent fi de-switc n langua nefits me ly relate than a S ce was a	S pairs shows d to TDNN-L Sions rst multilingu hed datasets, ages. ost when addited language, in Sotho language achieved when	s a 7.88 STM ba al acous and the tional tra h this ca e. data fro	3% relations and a se anoth	
Train TDNN-F Acoustic model (ASR4) WER Evaluation (Test set) WER Evaluation (Test set) WER Evaluation (Test set)	 trend. TDNN improv These trained investi System origina Nguni Best or code-system 	LSTM system vement in WER of experiments rep l on multiple co gation for Africa h performance be tes from a close language rather verall performan witched language ystem shows a W	for 4 C compare Conclus resent fi de-switc n langua nefits me ly relate than a S ce was a pairs w	S pairs shows d to TDNN-L Sions 	s a 7.88 STM ba al acous and the tional tra h this ca e. data fro	8% relations in the second sec	

UNIVERSITEIT STELLENBOSCH UNIVERSITY

SR.

ame 1%

rent

tem

how

tive

dels uch

lata ther

four

the