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Abstract

We present a method of improving the performance of auto-
matically induced lexicons for highly agglutinating languages.
Our previous work demonstrated the feasibility of using auto-
matic sub-word unit discovery and lexicon induction to enable
ASR for under-resourced languages. However, a particularly
challenging case for such approaches is found in agglutinat-
ing languages, which have large vocabularies of infrequently
used words. In this study, we address the unfavorable vocab-
ulary distribution of such languages by performing data-driven
morphological segmentation of the orthography prior to lexicon
induction. We apply this novel step to a corpus of recorded ra-
dio broadcasts in Luganda, which is a highly agglutinating and
severely under-resourced language. The intervention leads to
a 10% (relative) reduction in WER, which puts the resulting
ASR performance on par with an expert lexicon. When context
is added to the morphological segments prior to lexicon induc-
tion, a further 1% WER reduction is achieved. This demon-
strates that it is feasible to perform ASR in an under-resourced
setting using an automatically induced lexicon even in the case
of a highly agglutinating language.
Index Terms: unsupervised SWU discovery, automatic lexi-
con induction, ASR, under-resourced languages, morphological
segmentation

1. Introduction
The manual development of pronunciation lexicons, particu-
larly for the case of under-resourced languages, is generally a
time consuming and expensive process which requires the avail-
ability of linguists familiar with the task language. If the steps
of sub-word unit discovery (SWU) and pronunciation lexicon
generation could be automated with satisfactory performance,
it would greatly streamline the process of implementing auto-
matic speech recognition (ASR) in an under-resourced setting.
In some cases, such as where trained linguists are not available
at all, it would enable the implemention of ASR where it would
otherwise be infeasible.

In previous work we have demonstrated the feasibility of
performing ASR with an automatically induced pronunciation
lexicon in a truly under-resourced setting, using only recorded
speech and orthographic transcriptions [1]. However, we also
discovered that highly agglutinating languages (such as Lu-
ganda) pose a particular challenge for automatic lexicon induc-
tion. Specifically, the agglutinating nature of these languages
leads to a massive expansion in the number of vocabulary types,
many of which occur rarely. This makes it challenging to ob-
tain a sufficient number of observations per word for robust pro-
nunciation induction for a substantial portion of the vocabulary.
Because of this, we observed a performance margin relative to

expert lexicons which was significantly worse when compared
to less agglutinating languages.

In this work, we attempt to address this shortcoming by in-
ducing pronunciations for orthographic types that are shorter
than words. Ideally, these would be constituent morphemes de-
signed by expert linguists. However, since we operate in the
under-resourced setting, our objective is to have fully automatic
procedures that require minimal human input. We therefore in-
vestigate the use of a data-driven technique to subdivide words
into morpheme-like chunks (hereafter referred to as morpho-
logical segments) for which more reliable pronunciations can
potentially be induced. As far as we are aware, this is a novel
intervention in the automatic lexicon induction task.

2. Automatic sub-word unit discovery and
lexicon induction

2.1. Background

The task of automatically generating a pronunciation lexicon
from a word-annotated speech corpus requires addressing a
number of subtasks. First, a set of sub-word units needs to
be established, if one (such as an expert defined phoneme set
or suitable grapheme-based orthography) is not already avail-
able. Subsequently, pronunciations must be generated for each
word. Due to the considerable acoustic variability of speech,
this step produces a number of possible candidates, and neces-
sitates some form of scoring and pruning in order to achieve an
acceptable number of variants per word.

Many approaches to unsupervised SWU discovery rely on a
two-step process where speech is first segmented [2–7] and the
resulting segments are then clustered to form a compact set of
units [3, 7–15]. Alternatively, joint approaches to segmentation
and clustering can be taken, such as the estimation of a hierar-
chical Bayesian model (HBM) [16–21]. An alternative set of
approaches to jointly discover SWU segmentations and clusters
involves an iterative process where a speech corpus is tokenized
using a fixed set of SWU templates, and thereafter the templates
are updated while the tokenization is held fixed [7, 13, 14, 22].

Once a SWU inventory is defined, a pronunciation lexicon
can be generated. If a seed lexicon and an alphabetic orthog-
raphy is available, pronunciations for new words can be gener-
ated using grapheme-to-phoneme methods. Alternatively, can-
didates can be generated by means of Viterbi decoding, using
acoustic models obtained from a seed lexicon [23–28] or from
automatically discovered units [22]. There does not appear to
be any evidence in the literature of previous work that attempts
the generation of lexicons based on morphological segments in-
stead of words.

Once a set of candidate pronunciations has been generated,
their number must be reduced to a compact set of “canon-



ical” variants. This can be achieved through pronunciation
scoring and subsequent pruning. The most straightforward of
these scoring schemes is simply to use the relative frequency of
each candidate [8, 26, 27]. Alternative scoring approaches rely
on graph structure representations of pronunciation variation,
such as automata or lattices generated during acoustic decod-
ing [22, 23, 28]. This enables scoring based on, for example,
relative similarity to other hypotheses, even when no variant is
observed more than once.

2.2. Lexicon induction in the under-resourced setting

The two-stage approach to SWU discovery and lexicon induc-
tion that we proposed in [1] requires as input only recorded
speech and orthographic transcriptions. The first stage is an ini-
tial joint SWU and lexicon discovery step, which is performed
on a limited high-occurrence subset of the training set vocab-
ulary. Subsequently, a full lexicon extraction procedure is per-
formed which refines the SWU inventory and produces a lexi-
con covering the entire training set vocabulary.

The initial SWU discovery step proceeds by assigning a
number of HMM-GMM states to each word in the initial train-
ing set, and then allowing these states to self-organise. The
resulting states are subsequently agglomeratively tied across
words to form a compact set of SWUs and an initial lexicon.

The full lexicon extraction procedure uses a divide-and-
conquer strategy of iteratively and successively updating either
the lexicon or the SWU acoustic models while holding the other
fixed. The lexicon update consists of a candidate generation
step that simply performs an unconstained acoustic decode on
speech features that have been segmented to the word level, fol-
lowed by pruning. The pruning itself proceeds in two stages,
both of which rely on the estimation of a pronunciation model
for each word, based on an N-state left-to-right HMM with for-
ward skips and emitting SWU symbols on each state. The first
pruning stage reduces variability at the state-level, while the
second discards entire pronunciations.

3. Morphological segmentation
The process of morphological segmentations usually consists
of two stages: training a segmentation model θ, and subsequent
decoding of a test setW using a tokenization function φ (W ;θ)
[29–31]. In our case, however, we tokenize the training corpus
itself, so there is no secondary test set.

The training of the segmentation model θ involves mini-
mizing a cost function L(DW ,θ), where DW is the corpus of
training set words. The cost function consists of a model like-
lihood p(DW |θ) and a model prior p(θ). The data likelihood
assumes that the set of Lj morphological segments mji consti-
tuting a word wj occur independently such that:

log p(DW |θ) =
N∑

j=1

Lj∑
i=1

log p(mji|θ). (1)

The maximum-likelihood estimate of the probability of a mor-
phological segment is based on its usage count τi:

p(mi|θ) =
τi

N +
∑

i τi
. (2)

The prior probability of the model p(θ) assigns higher proba-
bilities to segmentation models that consist of fewer and shorter
segments. this is achieved by an implicit exponential prior on
morpheme lengths.

In order to control the model’s tendency to oversegment or
undersegment, a weight parameter α is introduced into the cost
function:

L(DW ,θ) = − log p(θ)− α log p(DW |θ). (3)

By reducing α, it is possible to emphasise the cost function con-
tribution due to the prior, which would favour a segmentation
model consisting of shorter segments, and vice versa. We can
therefore control the average segmentation length by tuning α.

The training algorithm implemented by Morfessor 2.0 pro-
ceeds with a greedy, local search [32]. It does this by consid-
ering one morphological segment at a time and evaluating each
possible split of the segment into smaller segments to determine
the one that minimizes the cost function with respect to the cur-
rent model parameters. The model parameters themselves are
then updated using the previously determined split as part of the
model. This procedure of splitting and model updating is per-
formed recursively on the segments resulting at each step. For
the sake of efficiency, morphological segments are tied across
all word types that contain many words.

3.1. Lexicon induction using morphological segments

We now describe how we extended our approach to lexicon in-
duction (see Section 2.2) to use morphological segments. An
overview of the steps involved is given in Figure 1. First, a
morphological segmentation is performed using the approach
described in Section 3. The training corpus for this segmen-
tation is the set of unique vocabulary types in the training set
orthographic transcriptions. A target average segment length is
specified at this stage, and the parameter α of the segmentation
cost function (Equation 3) is tuned to achieve this.

Subsequently, the resulting segmented orthographic tran-
scriptions are aligned with the training set acoustic features, in
order to extract pronunciations from the utterance-level SWU
sequences that result from acoustic decoding. There are at least
two ways to achieve this. The first is to regard the morpho-
logical segments as atomic, and train whole-segment acoustic
models which can then be used for Viterbi alignment. The sec-
ond option is to estimate acoustic models for grapheme SWUs
and use those for acoustic alignment. The latter option is ex-
pected to yield more accurate alignments, since grapheme-level
acoustic modeling is both more robust and more granular than
word level modeling. A further advantage of using graphemes
for alignment is that it decouples the performance of the result-
ing lexicons from the accuracy of the temporal segment align-
ments, which is otherwise expected to be correlated with the
average segment lengths.

Using the procedure described in Section 2.2, but using
morphological segment-level transcriptions instead of word-
level transcriptions, a full pronunciation lexicon for the mor-
phological segments can be extracted. Finally, in order to form
a word-level pronunciation lexicon, we concatenate the newly
induced pronunciations of the constituent morphological seg-
ments of each training set word.

4. Experiments and results
4.1. Dataset and experimental setup

The dataset used for experimentation is summarised in Table 1.
This data has been compiled from recordings of Ugandan com-
munity radio stations broadcasting in Luganda, and have been
orthographically annotated by mother-tongue speakers [33,34].



Perform morphological 
segmentation

Determine segment 
boundaries

All utterances (text)

Full lexicon extraction

All utterances (text & audio)

Updated SWU set & full lexicon 
(segment level pronunciations) 

Temporal alignment of segments 
with acoustic features

Segmented orthography
Target morphological 
segment length

Recombine segment level 
lexicon

Full lexicon 
(word level pronunciations)

Initial SWU set

Figure 1: Overview of the steps performed during lexicon induction using morphological segments.

Table 1: Summary of dataset used for experimental evaluation.

Dataset Hours #Utts #Word tokens

Train 9.59h 8774 18305
Test 0.29h 164 1150

Luganda is a highly agglutinating language, as can be seen from
the disproportionately large vocabulary relative to its recording
time. It is also a severely under-resourced language, with prac-
tically no resources available other than the dataset used in this
study. It is worth investigating the effect of morphological seg-
mentation on the other languages as well, but time constraints
did not allow this. The dataset includes a pronunciation lexicon
compiled by phonetic experts, which enabled the establishment
of a baseline indicating what can be achieved using the conven-
tional ASR system development approach.

In order to fairly compare the performance of perform-
ing lexicon induction with a morphologically segmented or-
thography to induction using the original orthography, we use
the same initial SWU inventory and associated metaparame-
ters (number of SWUs Np = 150 and average SWU duration
Rp = 78ms) in both cases. Further, in both cases we relied on
accurate temporal alignment of the orthographic segments with
the speech featurs.

We used the Morfessor 2.0 implementation of the approach
to performing morphological segmentation described in Sec-
tion 3 [32]. For the acoustic model estimation, decoding and
alignment necessary during lexicon extraction, we used the
HTK tools [35]. For the evaluation of ASR performance, we
used the Kaldi toolkit, culminating in a system consisting of a
combination of SGMM-MMI and DNN/HMM acoustic models
(SGMM+DNN) with cross-word dependency [36] . Although
newer and better models such as SGMM+TDNN are available,
we found that they reflect similar performance trends with a
relatively constant performance gain, while consuming signif-
icantly more processing time to train [1]. In addition to the
acoustic models, we trained bigram language models from cor-
pora consisting of only the corresponding training prompts.

4.2. Context independent pronunciation induction

In the first set of experiments involving morphological segmen-
tation, we investigated the effect of various target average seg-
ment lengths on the resulting vocabulary distributions and re-
sulting word error rates. The result of these experiments are
shown in Table 2. The lexicons indicated by Phoneme and
Grapheme represent the baseline results obtained using respec-
tively an expert-compiled phonetic lexicon and a lexicon using

graphemes as sub-word units. The lexicon indicated by Auto
refers to an automatically induced lexicon with no morpholog-
ical segmentation performed, i.e. using the unmodified orthog-
raphy. The lexicons indicated by Auto+segmentation refer to
lexicons that were automatically induced using the morpholog-
ically segmented orthography.

We observe from Table 2 that even modest levels morpho-
logical segmentation profoundly reduce the number of unique
types in the vocabulary, with an approximate halving of the av-
erage segment length leading to a nine-fold reduction in seg-
ment types. The frequency of occurrence of segment types also
becomes much more favourable.

These promising trends are also reflected in the word error
rates. Without morphological segmentation, the automatically
induced lexicon is substantially outperformed by the expert and
grapheme lexicons. However, even the least aggressive segmen-
tation yields error rates that are close to (or slightly better than)
the expert baseline, while still retaining a significant proportion
of segment types. A further reduction in error rates is observed
as the segments become shorter.

4.3. Context-dependent pronuniation induction

It was observed in the previous section that shorter morpholog-
ical segments yielded higher-performing lexicons. However,
shorter segments also it lead to a significant reduction in the
number of segment types. At some point the remaining seg-
ment types will become less able to capture all the acoustically
distinct types that would be necessary for linguistic discrimina-
tion during speech recognition. In order to address this, we will
attempt to increase the number of types associated with shorter
morphological segments by taking the preceding and the fol-
lowing segments into account as contextual information. This
should help capture segment-level pronunciation variation rele-
vant for distinguishing words.

When an inventory of context-dependant morphological
segments is established in such a way that each unique con-
text becomes a new type, it is expected that there will be a
large increase in types, many of which occur infrequently. This
might counteract any performance gain achieved by introducing
context-dependency. We address this by establishing a mini-
mum occurrence threshold for each context-dependent instance
of a segment. In cases where this threshold is not met, we pool
infrequent contexts of a segment either by shared left or right
context. If the specified threshold is still not met, then context
is discarded altogether.

We investigated the application of this approach for various
segment lengths and pooling thresholds, with the resulting word
error rates shown in Table 3. In general, we can observe a per-
formance improvement for the lexicons induced using context-



Table 2: Vocabulary distributions for various levels of morphological segmentation (average segment length in graphemes), and the
associated ASR performance for each system.

Lexicon Average
segment
length

# Types n > 3 n > 9 % WER

Types Tokens Types Tokens

Phoneme 54.94%
Grapheme 55.14%

Auto (unsegmented) 5.7 18305 14.4% 75.0% 5.6% 63.8% 60.91%

Auto + segmentation 3.0 2135 70.12% 99.31% 49.51% 97.72% 56.35%
2.5 836 93.42% 99.94% 82.30% 99.63% 56.35%
2.0 230 99.57% 100.00% 99.13% 100.00% 54.95%
1.5 70 98.57% 100.00% 97.14% 100.00% 54.90%
1.0 33 96.97% 100.00% 93.94% 100.00% 55.14%

Table 3: The ASR performance of lexicons induced us-
ing context-dependant morphological segmentation for various
pooling thresholds. A threshold of ∞ indicates context inde-
pendent segments.

Average segment length Threshold # Types % WER

2 ∞ 230 54.95%
250 434 54.33%
125 720 54.95%
62 1358 55.05%

1.5 ∞ 70 54.90%
250 462 55.53%
125 856 54.81%
62 1573 56.83%

1 ∞ 33 55.15%
250 655 54.52%
125 992 54.28%
62 1347 55.87%

dependant segments, relative to context-independant segments,
at least for some pooling thresholds. It is likely that there is a
trade-off involved with reducing the pooling threshold, which
increases the number of types for which independant pronunci-
ations are be obtained, but also reduces the number of observa-
tions per type, and thus the robustness of the estimated pronun-
ciations.

Another important observation is that we have been able to
improve on both the expert (phoneme) baseline as well as the
grapheme baseline for Luganda (54.95% and 55.14% respec-
tively), with the best-performing automatically induced system
achieving an error rate of 54.28%. The system producing this
error rate corresponds to a segment length of 1, which amounts
to mapping the automatically discovered pool of acoustic SWUs
to context-dependant graphemes. The improvement of such a
system over a pure grapheme-based lexicon is interesting, espe-
cially because the ASR training pipeline used for performance
evaluation already includes a context-dependant acoustic model
expansion step (in the form of triphone creation). Since the ASR
performance of the baseline grapheme lexicon already includes
context-dependence, it can be deduced that the additional per-
formance gain from using grapheme context during lexicon in-
duction can be attributed to our SWU inventory.

5. Summary and conclusions
In this paper, we have presented an approach for improving
the performance of automatic lexicon induction in the case of
a highly agglutinating language (Luganda). This involved per-
forming data-driven morphological segmentation on the train-
ing set orthography before lexicon induction. As summarised in
Table 4, the resulting ASR system exhibited an approximately
10% relative reduction in word error rate compared to the best
lexicon induced on an unsegmented orthography. We also
demonstrated that further performance gains can be achieved
by making the segments context dependent, resulting in a sys-
tem that performs 1% better than one trained using an expert
lexicon. This demonstrates that it is feasible to use automati-
cally induced lexicons to facilitate ASR in an under-resourced
setting even for highly agglutinating languages.

Table 4: Summary of the best ASR performance for each of the
various systems evaluated in this study.

System % WER

Phoneme 54.94%
Grapheme 55.14%

Auto 60.91%

Auto + segmentation 54.90%
Auto + segmentation + context 54.28%
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